Research into corrosion and electrocatalytic properties of the modified oxide films on tin

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.109710

Keywords:

modified oxide films, titanium oxide compounds, tin, corrosion resistance, electrocatalyctic activity

Abstract

Oxide films on tin, modified by titanium compounds, are non­toxic and serve as anticorrosion protection, material for gas sensors, photo­ and electrocatalysts. We investigated the process of anodic tin treatment in the presence of potassium metatitanate. It is shown that the two­stage technique for the formation of an oxide film at the electrode potentials of −0.3 V and 3.0 V makes it possible to substantially increase the content of titanium oxide compounds in the oxide mixture. The content of Ti(IV) reaches values of 14−15 % (mol). Films with a maximum content of titanium compounds and the largest corrosion resistance are formed at a concentration of potassium metatitanate above 1·10–3 mol/l. The time of self­activation of such films is 10 times longer than that of the unmodified films.

We explored catalytic properties of the obtained films with mixed composition SnОх(TiОу). It is shown that an increase in the content of titanium oxide compounds in the film contributes to the acceleration of anodic oxidation of MTBE. It was established that this process takes place directly on the surface of the oxide film rather than during interaction with oxygen formed on the anode. The modified oxide films SnОх(TiОу) on tin with maximal corrosion resistance and electrocatalytic activity are formed from the solutions that contain 0.5M KOH.

Author Biographies

Kateryna Plyasovskaya, Oles Honchar Dnipro National University Gagarin ave., 72, Dnipro, Ukraine, 49010

PhD, Associate Professor

Department of Physical and Inorganic Chemistry

Victor Vargalyuk, Oles Honchar Dnipro National University Gagarin ave., 72, Dnipro, Ukraine, 49010

Doctor of Chemical Sciences, Professor

Department of Physical and Inorganic Chemistry

Irina Sknar, Ukrainian State University of Chemical Technology Gagarin ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Processes, Devices and General Chemical Technology

Anna Cheremysinova, Ukrainian State University of Chemical Technology Gagarin ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Oleksii Sigunov, Ukrainian State University of Chemical Technology Gagarin ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Chemical Technology of Astringent Materials

Ann Karakurkchi, National Technical University “Kharkiv Polytechnic Institute” Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Head of Research Laboratory

Research Laboratory

References

  1. El-Sherif, R. M., Badawy, W. A. (2011). Mechanism of Corrosion and Corrosion Inhibition of Tin in Aqueous Solutions Containing Tartaric Acid. Int. J. Electrochem. Sci., 6, 6469–6482.
  2. Zhong, X., Zhang, G., Qiu, Y., Chen, Z., Guo, X., Fu, C. (2013). The corrosion of tin under thin electrolyte layers containing chloride. Corrosion Science, 66, 14–25. doi: 10.1016/j.corsci.2012.08.040
  3. Gervasi, C. A., Palacios, P. A., Fiori Bimbi, M. V., Alvarez, P. E. (2010). Electrochemical studies on the anodic behavior of tin in citrate buffer solutions. Journal of Electroanalytical Chemistry, 639 (1-2), 141–146. doi: 10.1016/j.jelechem.2009.12.002
  4. Gervasi, C. A., Palacios, P. A., Alvarez, P. E., Fiori-Bimbi, M. V., Brandan, S. A. (2013). Electronic Structure of Tin Passive Films and Its Influence on the Corrosion of the Base Metal. Industrial & Engineering Chemistry Research, 52 (26), 9115–9120. doi: 10.1021/ie4008216
  5. Gervasi, C. A., Alvarez, P. E., Fiori Bimbi, M. V., Folquer, M. E. (2007). Comparative cyclic voltammetry and SEM analysis of tin electrodes in citrate buffer solutions. Journal of Electroanalytical Chemistry, 601 (1-2), 194–204. doi: 10.1016/j.jelechem.2006.11.019
  6. Gervasi, C. A., Fiori Bimbi, M. V., Alvarez, P. E. (2009). Characterization of anodic tin passive films formed in citrate buffer solutions. Journal of Electroanalytical Chemistry, 625 (1), 60–68. doi: 10.1016/j.jelechem.2008.10.013
  7. Tselesh, A. S. (2008). Anodic behaviour of tin in citrate solutions: The IR and XPS study on the composition of the passive layer. Thin Solid Films, 516 (18), 6253–6260. doi: 10.1016/j.tsf.2007.11.118
  8. Palacios-Padrós, A., Caballero-Briones, F., Díez-Pérez, I., Sanz, F. (2013). Tin passivation in alkaline media: Formation of SnO microcrystals as hydroxyl etching product. Electrochimica Acta, 111, 837–845. doi: 10.1016/j.electacta.2013.07.200
  9. Kwaśniewski, D., Grdeń, M. (2015). Electrochemical behaviour of tin in alkaline electrolyte. Electrochemistry Communications, 61, 125–128. doi: 10.1016/j.elecom.2015.10.019
  10. Wang, M., Liu, Y., Xue, D., Zhang, D., Yang, H. (2011). Preparation of nanoporous tin oxide by electrochemical anodization in alkaline electrolytes. Electrochimica Acta, 56 (24), 8797–8801. doi: 10.1016/j.electacta.2011.07.085
  11. Lu, C., Wang, J., Meng, D., Wang, A., Wang, Y., Zhu, Z. (2016). Tunable synthesis of nanoporous tin oxide structures on metallic tin by one-step electrochemical anodization. Journal of Alloys and Compounds, 685, 670–679. doi: 10.1016/j.jallcom.2016.05.316
  12. Kaizra, S., Louafi, Y., Bellal, B., Trari, M., Rekhila, G. (2015). Electrochemical growth of tin(II) oxide films: Application in photocatalytic degradation of methylene blue. Materials Science in Semiconductor Processing, 30, 554–560. doi: 10.1016/j.mssp.2014.10.045
  13. Vargalyuk, V. F., Plyasovskaya, E. A., Nester, E. I. (2016). Еlectrodeposition of tin in presence of K2ТiО3. Visn. Dnipropetr. un-tu. Ser.: Khim., 24 (1), 7–12.
  14. Sknar, Y. E., Amirulloeva, N. V., Sknar, I. V., Danylov, F. I. (2016). Electrodeposition of Ni–ZrO2 Nanocomposites from Methanesulfonate Electrolytes. Materials Science, 51 (6), 877–884. doi: 10.1007/s11003-016-9916-2
  15. Danilov, F. I., Sknar, Y. E., Tkach, I. G., Sknar, I. V. (2015). Electrodeposition of nickel-based nanocomposite coatings from cerium(III)-ion-containing methanesulfonate electrolytes. Russian Journal of Electrochemistry, 51 (4), 294–298. doi: 10.1134/s1023193515040023
  16. Danilov, F. I., Sknar, Y. E., Amirulloeva, N. V., Sknar, I. V. (2016). Kinetics of electrodeposition of Ni–ZrO2 nanocomposite coatings from methanesulfonate electrolytes. Russian Journal of Electrochemistry, 52 (5), 494–499. doi: 10.1134/s1023193516050037
  17. Yu, Y., Wang, T., Fu, Y., Su, W., Hu, J. (2014). Platinum nanoparticles ion-implanted-modified indium tin oxide electrode for electrocatalytic oxidation of formaldehyde. International Journal of Hydrogen Energy, 39 (31), 17617–17621. doi: 10.1016/j.ijhydene.2014.08.149
  18. Geiger, S., Kasian, O., Mingers, A. M., Mayrhofer, K. J. J., Cherevko, S. (2017). Stability limits of tin-based electrocatalyst supports. Scientific Reports, 7 (1). doi: 10.1038/s41598-017-04079-9
  19. Vargalyuk, V. F., Plyasovska, K. A. (2009). Electrochemical formation of SnхTi(1-х)О2 oxide film on tin. Visn. Dnipropetr. un-tu. Ser.: Khim., 17 (15), 42–45.
  20. Vargalyuk, V. F., Plyasovskaya, E. A., Zamyatina, A. S. (2015). Peculiarities of the electrooxidation of tin in alkaline medium. Ukrainian Chemistry Journal, 81 (1/2), 40–43.

Downloads

Published

2017-10-31

How to Cite

Plyasovskaya, K., Vargalyuk, V., Sknar, I., Cheremysinova, A., Sigunov, O., & Karakurkchi, A. (2017). Research into corrosion and electrocatalytic properties of the modified oxide films on tin. Eastern-European Journal of Enterprise Technologies, 5(12 (89), 39–44. https://doi.org/10.15587/1729-4061.2017.109710

Issue

Section

Materials Science