Comparison of oxygen evolution parameters on different types of nickel hydroxide

Authors

  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0001-8879-7189
  • Vadym Kovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732
  • Valerii Malyshev Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0001-6236-1053

DOI:

https://doi.org/10.15587/1729-4061.2017.109770

Keywords:

oxygen evolution, side­process, nickel hydroxide, Ni(OH)2, cyclic voltamperometry curve

Abstract

A simple method for determining the oxygen evolution parameters, that uses step­wise potentiostatic regime was proposed. The proposed method was used to study the oxygen evolution on the nickel hydroxide samples that were prepared using different methods and had different grain size. The samples used in the research were studied using Scanning Electron Microscopy, X­ray diffraction, IR­spectroscopy, and Energy Dispersive X­ray analysis. It was demonstrated that the used Ni(OH)2 samples have different morphology, structure and composition. The industrial β­Ni(OH)2 sample has a shard­like structure, high degree of crystallinity and no intercalated anions. The electrochemically prepared sample has a low degree of crystallinity and has a structure that is composed of α and β­forms that contain carbonate and sulfate ions. It had been demonstrated that polarization of oxygen evolution depends on the methods of nickel (II) hydroxide synthesis and its grain size. The effective constants of the Tafel equation had been determined, which for industrial Ni(OH)2 samples are аeff=0.383 beff=0.055 (0–70 µm grain size) and аeff=0.414, beff=0.067 (0–40 µm grain size), for the electrochemically prepared sample – аeff=0.451, beff=0.089 (0–70 µm grain size). It was also demonstrated that polarization of oxygen evolution is affected differently by high current densities for different powders. 

Author Biographies

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Vadym Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Valerii Malyshev, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

Postgraduate student

Department of Technical Electrochemistry 

References

  1. Kovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: 10.15587/1729-4061.2016.79406
  2. Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: 10.1007/s10008-016-3405-2
  3. Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: 10.15587/1729-4061.2017.106813
  4. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. EasternEuropean Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: 10.15587/1729-4061.2017.108839
  5. Solovov, V., Kovalenko, V., Nikolenko, N., Kotok, V., Vlasova, E. (2017). Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 16–22. doi: 10.15587/1729-4061.2017.90873
  6. Miao, F., Tao, B., Chu, P. K. (2015). Ordered-standing nickel hydroxide microchannel arrays: Synthesis and application for highly sensitive non-enzymatic glucose sensors. Microelectronic Engineering, 133, 11–15. doi: 10.1016/j.mee.2014.11.005
  7. Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.
  8. Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: 10.15587/1729-4061.2017.97371
  9. Huang, W., Wang, H., Zhou, J., Wang, J., Duchesne, P. N., Muir, D. et. al. (2015). Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nature Communications, 6, 10035. doi: 10.1038/ncomms10035
  10. Ranganathan, P., Sasikumar, R., Chen, S.-M., Rwei, S.-P., Sireesha, P. (2017). Enhanced photovoltaic performance of dye-sensitized solar cells based on nickel oxide supported on nitrogen-doped graphene nanocomposite as a photoanode. Journal of Colloid and Interface Science, 504, 570–578. doi: 10.1016/j.jcis.2017.06.012
  11. Huo, J., Tu, Y., Zheng, M., Wu, J. (2017). Fabrication a thin nickel oxide layer on photoanodes for control of charge recombination in dye-sensitized solar cells. Journal of Solid State Electrochemistry, 21 (6), 1523–1531. doi: 10.1007/s10008-017-3515-5
  12. Malara, F., Carallo, S., Rotunno, E., Lazzarini, L., Piperopoulos, E., Milone, C., Naldoni, A. (2017). A Flexible Electrode Based on Al-Doped Nickel Hydroxide Wrapped around a Carbon Nanotube Forest for Efficient Oxygen Evolution. ACS Catalysis, 7 (7), 4786–4795. doi: 10.1021/acscatal.7b01188
  13. Qiu, C., Liu, D., Jin, K., Fang, L., Sha, T. (2017). Corrosion resistance and micro-tribological properties of nickel hydroxide-graphene oxide composite coating. Diamond and Related Materials, 76, 150–156. doi: 10.1016/j.diamond.2017.04.015
  14. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2014). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792–20140792. doi: 10.1098/rspa.2014.0792
  15. Vidotti, M., Torresi, R., Torresi, S. I. C. de. (2010). Eletrodos modificados por hidróxido de níquel: um estudo de revisão sobre suas propriedades estruturais e eletroquímicas visando suas aplicações em eletrocatálise, eletrocromismo e baterias secundárias. Química Nova, 33 (10), 2176–2186. doi: 10.1590/s0100-40422010001000030
  16. Yan-wei, L., Chang-jiu, L., Jin-huan, Y. (2010). Progress in research on amorphous nickel hydroxide electrode materials. Xiandai Huagong/Modern Chemical Industry, 30 (2), 25–27.
  17. Feng, L., Zhu, Y., Ding, H., Ni, C. (2014). Recent progress in nickel based materials for high performance pseudocapacitor electrodes. Journal of Power Sources, 267, 430–444. doi: 10.1016/j.jpowsour.2014.05.092
  18. Snook, G. A., Duffy, N. W., Pandolfo, A. G. (2008). Detection of Oxygen Evolution from Nickel Hydroxide Electrodes Using Scanning Electrochemical Microscopy. Journal of The Electrochemical Society, 155 (3), A262. doi: 10.1149/1.2830837
  19. Kotok, V., Kovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: 10.15587/1729-4061.2017.90810
  20. Bronoel, G., Reby, J. (1980). Mechanism of oxygen evolution in basic medium at a nickel electrode. Electrochimica Acta, 25 (7), 973–976. doi: 10.1016/0013-4686(80)87102-7
  21. Nadesan, J. C. B. (1985). Oxygen Evolution on Nickel Oxide Electrodes. Journal of The Electrochemical Society, 132 (12), 2957. doi: 10.1149/1.2113700
  22. Motupally, S. (1998). The Role of Oxygen at the Second Discharge Plateau of Nickel Hydroxide. Journal of The Electrochemical Society, 145 (1), 34. doi: 10.1149/1.1838206
  23. Wang, X. (2004). Oxygen catalytic evolution reaction on nickel hydroxide electrode modified by electroless cobalt coating. International Journal of Hydrogen Energy, 29 (9), 967–972. doi: 10.1016/j.ijhydene.2003.05.001
  24. Snook, G. A., Duffy, N. W., Pandolfo, A. G. (2007). Evaluation of the effects of oxygen evolution on the capacity and cycle life of nickel hydroxide electrode materials. Journal of Power Sources, 168 (2), 513–521. doi: 10.1016/j.jpowsour.2007.02.060
  25. Lyons, M. E. G., Russell, L., O’Brien, M., Doyle, R. L., Godwin, I., Brandon, M. P. (2012). Redox Switching and Oxygen Evolution at Hydrous Oxyhydroxide Modified Nickel Electrodes in Aqueous Alkaline Solution: Effect of Hydrous Oxide Thickness and Base Concentration. Int. J. Electrochem. Sci., 7, 2710–2763.
  26. Lyons, M. E. G., Doyle, R. L., Godwin, I., O’Brien, M., Russell, L. (2012). Hydrous Nickel Oxide: Redox Switching and the Oxygen Evolution Reaction in Aqueous Alkaline Solution. Journal of the Electrochemical Society, 159 (12), H932–H944. doi: 10.1149/2.078212jes
  27. Mellsop, S. R., Gardiner, A., Marshall, A. T. (2015). Electrocatalytic oxygen evolution on nickel oxy-hydroxide anodes: Improvement through rejuvenation. Electrochimica Acta, 180, 501–506. doi: 10.1016/j.electacta.2015.08.061
  28. Bau, J. A., Luber, E. J., Buriak, J. M. (2015). Oxygen Evolution Catalyzed by Nickel–Iron Oxide Nanocrystals with a Nonequilibrium Phase. ACS Applied Materials & Interfaces, 7 (35), 19755–19763. doi: 10.1021/acsami.5b05594
  29. Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: 10.15587/1729-4061.2017.95699
  30. Kotok, V., Kovalenko, V. (2017). Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 38–43. doi: 10.15587/1729-4061.2017.103010
  31. Oliva, P., Leonardi, J., Laurent, J. F., Delmas, C., Braconnier, J. J., Figlarz, M. et. al. (1982). Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. Journal of Power Sources, 8 (2), 229–255. doi: 10.1016/0378-7753(82)80057-8
  32. Genin, P., Delahaye-Vidal, A., Portemer, F., Tekaia-Elhsissen, K., Figlarz, M. (1991). Preparation and characterization of α-type nickel hydroxides obtained by chemical precipitation: study of the anionic species. Eur. J. Solid State Inorg. Chem., 28, 505.
  33. Faure, C., Delmas, C., Fouassier, M. (1991). Characterization of a turbostratic α-nickel hydroxide quantitatively obtained from an NiSO4 solution. Journal of Power Sources, 35 (3), 279–290. doi: 10.1016/0378-7753(91)80112-b
  34. Delahaye-Vidal, A. (1996). Structural and textural investigations of the nickel hydroxide electrode. Solid State Ionics, 84 (3-4), 239–248. doi: 10.1016/0167-2738(96)00030-6
  35. Srinivasan, V., Weidner, J. W., White, R. E. (2000). Mathematical models of the nickel hydroxide active material. Journal of Solid State Electrochemistry, 4 (7), 367–382. doi: 10.1007/s100080000107

Downloads

Published

2017-10-31

How to Cite

Kotok, V., Kovalenko, V., & Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5(12 (89), 12–19. https://doi.org/10.15587/1729-4061.2017.109770

Issue

Section

Materials Science