Synthesis and characterisation of dyeintercalated nickelaluminium layereddouble hydroxide as a cosmetic pigment
DOI:
https://doi.org/10.15587/1729-4061.2017.109814Keywords:
cosmetic pigment, murexide, NiAl LDH, chemisorption, intercalation, nail polishAbstract
Dyeintercalated layered double hydroxides (LDH) are modern promising pigments for paint and cosmetics industry. For the preparation of highquality cosmetic pigments, particularly for nail polish, it was proposed to use not only intercalation but also chemisorption. For the pigment synthesis, NiAL LDH was chosen, along with murexide (Ammonium (purpurate) 2,6dioxo5[(2,4,6trioxo5hexahydropyrimidinylidene)amino]3Hpyrimidin4olate), in which colored purpurate anion is able to form complex compounds with Ni2+. The murexideintercalated (murexide amount for intercalation only) and murexideintercalatedchemisorbed (murexide amount for Ni2+) NiAl LDH pigments were synthesized and used for the preparation of nail polish samples. The crystallographic composition was studied by means of XRD analysis. The color parameters (coordinates of color and chromaticity, dominant wavelength and color purity) of pigment powders and nail polish samples with these pigments have been studied using a color comparator. Organoleptic characteristics of pigment and nail polish samples were studied. The positive influence of chemisorption was shown: murexideintercalatedchemisorbed pigment is easily ground, with the formation of highly dispersed powder, which during the preparation of nail polish was easily dispersed with the formation of stable yellow samples (dominant wavelength 583 nm) with high color purity of 43 %. Also, high covering ability of the murexideintercalatedchemisorbed pigment was shown: highquality, opaque, colored nail polish coat was formed at the pigment content of 45 %, 30 % and 15 % (wt.). For the synthesis of such pigments, it was recommended to choose anionic dyes that can form coordination bonds with LDH cations.
References
- Drahl, C. (2008). Nail polish. Chemical & Engineering News, 86 (32), 42. doi: 10.1021/cen-v086n032.p042
- Mariani, F. Q., Borth, K. W., Müller, M., Dalpasquale, M., Anaissi, F. J. (2017). Sustainable innovative method to synthesize different shades of iron oxide pigments. Dyes and Pigments, 137, 403–409. doi: 10.1016/j.dyepig.2016.10.024
- Zaichuk, A. V., Belyi, Y. I. (2012). Brown ceramic pigments based on open-hearth slag. Russian Journal of Applied Chemistry, 85 (10), 1531–1535. doi: 10.1134/s1070427212100072
- Zaichuk, A. V., Belyi, Y. I. (2012). Black ceramic pigments based on open-hearth slag. Glass and Ceramics, 69 (3-4), 99–103. doi: 10.1007/s10717-012-9423-3
- Zaychuk, A., Iovleva, J. (2013). The study of ceramic pigments of spinel type with the use of slage of aluminothermal production of ferrotitanium. Chemistry & Chemical Technology, 7 (2), 217–225.
- Zaichuk, A. V., Belyi, Y. I. (2013). Improvement of the Compositions and Properties of Gray Ceramic Pigments. Glass and Ceramics, 70 (5-6), 229–233. doi: 10.1007/s10717-013-9550-5
- Zaichuk, A. V., Amelina, A. A. (2017). Production of Uvarovite Ceramic Pigments Using Granulated Blast-Furnace Slag. Glass and Ceramics, 74 (3-4), 99–103. doi: 10.1007/s10717-017-9937-9
- Khan, A. I., Ragavan, A., Fong, B., Markland, C., O’Brien, M., Dunbar, T. G. et. al. (2009). Recent Developments in the Use of Layered Double Hydroxides as Host Materials for the Storage and Triggered Release of Functional Anions. Industrial & Engineering Chemistry Research, 48 (23), 10196–10205. doi: 10.1021/ie9012612
- Mandal, S., Tichit, D., Lerner, D. A., Marcotte, N. (2009). Azoic Dye Hosted in Layered Double Hydroxide: Physicochemical Characterization of the Intercalated Materials. Langmuir, 25 (18), 10980–10986. doi: 10.1021/la901201s
- Mandal, S., Lerner, D. A., Marcotte, N., Tichit, D. (2009). Structural characterization of azoic dye hosted layered double hydroxides. Zeitschrift Für Kristallographie, 224 (5-6). doi: 10.1524/zkri.2009.1150
- Wang, Q., Feng, Y., Feng, J., Li, D. (2011). Enhanced thermal- and photo-stability of acid yellow 17 by incorporation into layered double hydroxides. Journal of Solid State Chemistry, 184 (6), 1551–1555. doi: 10.1016/j.jssc.2011.04.020
- Liu, J. Q., Zhang, X. C., Hou, W. G., Dai, Y. Y., Xiao, H., Yan, S. S. (2009). Synthesis and Characterization of Methyl-Red/Layered Double Hydroxide (LDH) Nanocomposite. Advanced Materials Research, 79-82, 493–496. doi: 10.4028/www.scientific.net/amr.79-82.493
- Tian, Y., Wang, G., Li, F., Evans, D. G. (2007). Synthesis and thermo-optical stability of o-methyl red-intercalated Ni–Fe layered double hydroxide material. Materials Letters, 61 (8-9), 1662–1666. doi: 10.1016/j.matlet.2006.07.094
- Hwang, S.-H., Jung, S.-C., Yoon, S.-M., Kim, D.-K. (2008). Preparation and characterization of dye-intercalated Zn–Al-layered double hydroxide and its surface modification by silica coating. Journal of Physics and Chemistry of Solids, 69 (5-6), 1061–1065. doi: 10.1016/j.jpcs.2007.11.002
- Tang, P., Deng, F., Feng, Y., Li, D. (2012). Mordant Yellow 3 Anions Intercalated Layered Double Hydroxides: Preparation, Thermo- and Photostability. Industrial & Engineering Chemistry Research, 51 (32), 10542–10545. doi: 10.1021/ie300645b
- Tang, P., Feng, Y., Li, D. (2011). Fabrication and properties of Acid Yellow 49 dye-intercalated layered double hydroxides film on an alumina-coated aluminum substrate. Dyes and Pigments, 91 (2), 120–125. doi: 10.1016/j.dyepig.2011.03.012
- Tang, P., Feng, Y., Li, D. (2011). Improved thermal and photostability of an anthraquinone dye by intercalation in a zinc–aluminum layered double hydroxides host. Dyes and Pigments, 90 (3), 253–258. doi: 10.1016/j.dyepig.2011.01.007
- Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: 10.1007/s11029-014-9408-0
- Кovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: 10.15587/1729-4061.2017.91205
- Shamim, M., Dana, K. (2017). Efficient removal of Evans blue dye by Zn–Al–NO3 layered double hydroxide. International Journal of Environmental Science and Technology. doi: 10.1007/s13762-017-1478-9
- Mahjoubi, F. Z., Khalidi, A., Abdennouri, M., Barka, N. (2017). Zn–Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulphate ions: Synthesis, characterisation and dye removal properties. Journal of Taibah University for Science, 11 (1), 90–100. doi: 10.1016/j.jtusci.2015.10.007
- Chakraborty, C., Dana, K., Malik, S. (2011). Intercalation of Perylenediimide Dye into LDH Clays: Enhancement of Photostability. The Journal of Physical Chemistry C, 115 (5), 1996–2004. doi: 10.1021/jp110486r
- Pahalagedara, M. N., Samaraweera, M., Dharmarathna, S., Kuo, C.-H., Pahalagedara, L. R., Gascón, J. A., Suib, S. L. (2014). Removal of Azo Dyes: Intercalation into Sonochemically Synthesized NiAl Layered Double Hydroxide. The Journal of Physical Chemistry C, 118 (31), 17801–17809. doi: 10.1021/jp505260a
- Darmograi, G., Prelot, B., Layrac, G., Tichit, D., Martin-Gassin, G., Salles, F., Zajac, J. (2015). Study of Adsorption and Intercalation of Orange-Type Dyes into Mg–Al Layered Double Hydroxide. The Journal of Physical Chemistry C, 119 (41), 23388–23397. doi: 10.1021/acs.jpcc.5b05510
- Marangoni, R., Bouhent, M., Taviot-Guého, C., Wypych, F., Leroux, F. (2009). Zn2Al layered double hydroxides intercalated and adsorbed with anionic blue dyes: A physico-chemical characterization. Journal of Colloid and Interface Science, 333 (1), 120–127. doi: 10.1016/j.jcis.2009.02.001
- El Hassani, K., Beakou, B. H., Kalnina, D., Oukani, E., Anouar, A. (2017). Effect of morphological properties of layered double hydroxides on adsorption of azo dye Methyl Orange: A comparative study. Applied Clay Science, 140, 124–131. doi: 10.1016/j.clay.2017.02.010
- Abdellaoui, K., Pavlovic, I., Bouhent, M., Benhamou, A., Barriga, C. (2017). A comparative study of the amaranth azo dye adsorption/desorption from aqueous solutions by layered double hydroxides. Applied Clay Science, 143, 142–150. doi: 10.1016/j.clay.2017.03.019
- Santos, R. M. M. dos, Gonçalves, R. G. L., Constantino, V. R. L., Santilli, C. V., Borges, P. D., Tronto, J., Pinto, F. G. (2017). Adsorption of Acid Yellow 42 dye on calcined layered double hydroxide: Effect of time, concentration, pH and temperature. Applied Clay Science, 140, 132–139. doi: 10.1016/j.clay.2017.02.005
- Bharali, D., Deka, R. C. (2017). Adsorptive removal of congo red from aqueous solution by sonochemically synthesized NiAl layered double hydroxide. Journal of Environmental Chemical Engineering, 5 (2), 2056–2067. doi: 10.1016/j.jece.2017.04.012
- Ahmed, M. A., brick, A. A., Mohamed, A. A. (2017). An efficient adsorption of indigo carmine dye from aqueous solution on mesoporous Mg/Fe layered double hydroxide nanoparticles prepared by controlled sol-gel route. Chemosphere, 174, 280–288. doi: 10.1016/j.chemosphere.2017.01.147
- Solovov, V., Kovalenko, V., Nikolenko, N., Kotok, V., Vlasova, E. (2017). Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 16–22. doi: 10.15587/1729-4061.2017.90873
- Hu, M., Lei, L. (2006). Effects of particle size on the electrochemical performances of a layered double hydroxide, [Ni4Al(OH)10]NO3. Journal of Solid State Electrochemistry, 11 (6), 847–852. doi: 10.1007/s10008-006-0231-y
- Kovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: 10.15587/1729-4061.2016.79406
- Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: 10.1007/s10008-016-3405-2
- Xiao-yan, G., Jian-cheng, D. (2007). Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Materials Letters, 61 (3), 621–625. doi: 10.1016/j.matlet.2006.05.026
- Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration on the properties of nickel hydroxide, obtained by homogeneous precepitation, for supercapacitor application. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: 10.15587/1729-4061.2017.106813
- Saikia, H., Ganguli, J. N. (2012). Intercalation of Azo Dyes in Ni-Al Layered Double Hydroxides. Asian Journal of Chemistry, 24 (12), 5909–5913.
- Kotok, V., Kovalenko, V. (2017). Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 38–43. doi: 10.15587/1729-4061.2017.103010
- Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: 10.15587/1729-4061.2017.108839
- Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: 10.15587/1729-4061.2017.95699
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Vadym Kovalenko, Valerii Kotok, Anastasiya Yeroshkina, Alexander Zaychuk
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.