Implementation of the method of electrochemical destruction during disposal of pharmaceutical glass waste

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.109826

Keywords:

pharmaceutical glass waste, pharmaceutical substances, electrochemical destruction, disposal

Abstract

Active development of the pharmaceutical market shows a tendency to increase of pharmaceutical glass waste. The negative impact of waste on the environment shows itself in contamination of its elements by pharmaceutical substances contained in the waste, as well as the effects of medical glass and pathogens of infectious diseases.

It was established that increasing of the ecologically safe handling of pharmaceutical glass waste and improvement of the disposal of glass can be provided by the method of electrochemical destruction of pharmaceutical substances. The optimal regimes and conditions to carry out the anodic oxidation process and the kinetic parameters of complete destruction of pharmaceutical substances (diclofenac, beta-estradiol, furosemide, atenolol, cefuroxime) were experimentally determined. The effectiveness of electrochemical destruction of five priority pharmaceutical substances, as well as their mixtures in a solution with sodium chloride using ORTA anode, was experimentally proved. It was established that complete destruction of pharmaceutical substances occurs during the process of electrochemical oxidation. It was noted that the introduction of this method makes it possible to destroy harmful pharmaceutical substances and to disinfect the solutions of pharmaceutical preparations infected with Escherichia coli bacteria in a single process. An additional positive effect of the introduction of the method is the improvement of the quality of pharmaceutical waste as a secondary material resource and promotion of the improvement in the technological processes of pharmaceutical waste disposal

Author Biographies

Nataliia Samoilenko, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Professor

Department of chemical engineering and industrial ecology

Iryna Yermakovych, O. M. Beketov National University of Urban Economy in Kharkiv Marshala Bazhanova str., 17, Kharkiv, Ukraine, 61002

PhD, Assistant

Department of engineering of urban ecology

Volodymyr Bairachnyi, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Professor

Department of chemical engineering and industrial ecology

Antonina Baranova, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Postgraduate student

Department of chemical engineering and industrial ecology

References

  1. Singleton, J. A., Nissen, L. M., Barter, N., McIntosh, M. (2014). The global public health issue of pharmaceutical waste: what role for pharmacists? Journal of Global Responsibility, 5 (1), 126–137. doi: 10.1108/jgr-03-2014-0009
  2. I znovu naperedodni zmin. Shcho chekaie na farmrynok Ukrainy u 2017 r.? (2017). XII Shchorichnoho analitychnoho forumu «Farmapohliad-2017» Apteka, 5 (1076). Available at: http://www.apteka.ua/article/400906
  3. Dyrektyva ES 94/62 vid 20.12.1994 r. pro pakuvannia i pakuvalni vidkhody (1994). Oficial'nyy Zhurnal ES, L365, 0010–0023.
  4. Zakon Ukrainy «Pro vidkhody» vid 05.03.1998 No. 187/98-VR. Kodeksy.com.ua. Available at: http://kodeksy.com.ua/pro_vidhodi.htm
  5. Samoylenko, N. N., Ermakovich, I. A. (2014). Vliyanie farmacevticheskih preparatov i ih proizvodnyh na okruzhayushchuyu sredu. Voda i ekologiya. Problemy i resheniya, 2, 78–87.
  6. Chander, V., Sharma, B., Negi, V., Aswal, R. S., Singh, P., Singh, R., Dobhal, R. (2016). Pharmaceutical compounds in drinking water. Journal of Xenobiotics, 6 (1). doi: 10.4081/xeno.2016.5774
  7. Vasquez, M. I., Lambrianides, A., Schneider, M., Kümmerer, K., Fatta-Kassinos, D. (2014). Environmental side effects of pharmaceutical cocktails: What we know and what we should know. Journal of Hazardous Materials, 279, 169–189. doi: 10.1016/j.jhazmat.2014.06.069
  8. Ruhoy, I. S., Daughton, C. G. (2008). Beyond the medicine cabinet: An analysis of where and why medications accumulate. Environment International, 34 (8), 1157–1169. doi: 10.1016/j.envint.2008.05.002
  9. He, Z., Cheng, X., Kyzas, G. Z., Fu, J. (2016). Pharmaceuticals pollution of aquaculture and its management in China. Journal of Molecular Liquids, 223, 781–789. doi: 10.1016/j.molliq.2016.09.005
  10. Saleh, A., Larsson, E., Yamini, Y., Jönsson, J. Å. (2011). Hollow fiber liquid phase microextraction as a preconcentration and clean-up step after pressurized hot water extraction for the determination of non-steroidal anti-inflammatory drugs in sewage sludge. Journal of Chromatography A, 1218 (10), 1331–1339. doi: 10.1016/j.chroma.2011.01.011
  11. Sagristà, E., Larsson, E., Ezoddin, M., Hidalgo, M., Salvadó, V., Jönsson, J. Å. (2010). Determination of non-steroidal anti-inflammatory drugs in sewage sludge by direct hollow fiber supported liquid membrane extraction and liquid chromatography–mass spectrometry. Journal of Chromatography A, 1217 (40), 6153–6158. doi: 10.1016/j.chroma.2010.08.005
  12. Fu, H., Li, X., Wang, J., Lin, P., Chen, C., Zhang, X., Suffet, I. H. (Mel). (2017). Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling. Journal of Environmental Sciences, 56, 145–152. doi: 10.1016/j.jes.2016.09.010
  13. De Luna, M. D. G., Murniati, Budianta, W., Rivera, K. K. P., Arazo, R. O. (2017). Removal of sodium diclofenac from aqueous solution by adsorbents derived from cocoa pod husks. Journal of Environmental Chemical Engineering, 5 (2), 1465–1474. doi: 10.1016/j.jece.2017.02.018
  14. Carter, L. J., Ryan, J. J., Boxall, A. B. A. (2016). Effects of soil properties on the uptake of pharmaceuticals into earthworms. Environmental Pollution, 213, 922–931. doi: 10.1016/j.envpol.2016.03.044
  15. Gurevich, P. A., Shavaleeva, S. M., Glebov, A. N., Bayanova, L. N. (2013). Himicheskaya korroziya stekloboya i othodov steklyannoy tary kak faktor negativnogo vliyaniya na okruzhayushchuyu sredu. Vestn. KTU, 16 (11), 60.
  16. Yousefi, Z., Avak Rostami, M. (2017). Quantitative and qualitative characteristics of hospital waste in the city of Behshahr-2016. Environmental Health Engineering and Management, 4 (1), 59–64. doi: 10.15171/ehem.2017.09
  17. Kobrin, V. N., Ersmambetov, V. Sh., Homenko, I. E. (2012). Razrabotka metodov utilizacii mediko-biologicheskih othodov. Problemy okhorony navkolyshnoho pryrodnoho seredovyshcha ta ekolohichnoi bezpeky, 34, 134–139.
  18. Mozzhuhina, N. A., Nikonov, V. A., Eremin, G. B., Dolgaya, E. A. (2015). Sanitarno-epidemiologicheskaya ocenka obezzarazhivaniya medicinskih othodov v sterilizatore s integrirovannym izmel'chitelem «CELITRON». Zdorov'e – osnova chelovecheskogo potenciala: problemy i puti ih resheniya, 10 (1), 395–396.
  19. Naznachenie i princip raboty oborudovaniya dlya utilizacii medicinskih othodov «BALTNER» (2017). Ekomedika. Available at: http://www.ekomedika.ru/e/19-ustanovka-dlya-utilizatsii-meditsinskih-othod
  20. Jiang, X. G., An, C. G., Li, C. Y., Fei, Z. W., Jin, Y. Q., Yan, J. H. (2009). Fusibility of medical glass in hospital waste incineration: Effect of glass components. Thermochimica Acta, 491 (1-2), 39–43. doi: 10.1016/j.tca.2009.02.018
  21. Natsionalna stratehiya upravlinnia vidkhodamy dlia ukrainy poperednyi proekt dodatok 6 Spetsyfichni vydy vidkhodiv: vidkhody elektrychnoho ta elektronnoho obladnannia (2016). Kyiv: Consortium Resources and Waste Advisory Group Limited, UK and COWI A/S, Denmark, 2016. Available at: http://compi.com.ua/nacionalena-strategiya-upravlinnya-vidhodami-dlya-ukrayini-pop.html?page=13
  22. Feng, L., van Hullebusch, E. D., Rodrigo, M. A., Esposito, G., Oturan, M. A. (2013). Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chemical Engineering Journal, 228, 944–964. doi: 10.1016/j.cej.2013.05.061
  23. Zhao, X., Hou, Y., Liu, H., Qiang, Z., Qu, J. (2009). Electro-oxidation of diclofenac at boron doped diamond: Kinetics and mechanism. Electrochimica Acta, 54 (17), 4172–4179. doi: 10.1016/j.electacta.2009.02.059
  24. Samoylenko, N. N., Ermakovich, I. A. (2014). The implementation of electrochemical destruction process for decontamination of wastewaters of medical establishments. Eastern-European Journal of Enterprise Technologies, 4 (10 (70)), 18–21. doi: 10.15587/1729-4061.2014.26138

Downloads

Published

2017-10-24

How to Cite

Samoilenko, N., Yermakovych, I., Bairachnyi, V., & Baranova, A. (2017). Implementation of the method of electrochemical destruction during disposal of pharmaceutical glass waste. Eastern-European Journal of Enterprise Technologies, 5(10 (89), 39–45. https://doi.org/10.15587/1729-4061.2017.109826