Application of spectral analysis for differentiation between metals using signals from eddy-current transducers

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.110177

Keywords:

dichotomy, vortex-current metal detector, VLF metal detector, PI metal detector, Foucault currents, microcontrollers

Abstract

The authors theoretically and experimentally substantiated the use of the spectral method for processing a signal of the vortex-current metal detector for dichotomous differentiation between metals. Results of experimental research that prove the possibility of using spectral analysis for differentiation between metals were presented.

The vortex-current method for detection of hidden metal objects was analyzed. It was indicated that amplitude of output VCD signal is determined by electric conductivity of material of a hidden object and its magnetic permeability. It was shown that the spectral density of a signal can be an informative feature.

The authors designed and fabricated a mockup of the vortex-current device, the special features of which include modularity, which, if necessary, makes it possible to replace quickly each of the modules. The developed algorithm of normalization of signals allows an operator to choose freely a scan mode and compare correctly VCD signals with reference signals.

Research results show that it is possible to distinguish easily between the spectra of ferrous metals and those of non-ferrous metals. Spectral methods can be applied both for dichotomous analysis of hidden metal objects and for analysis of the type of metal in the subgroup of non-ferrous metals under condition of using highly sensitive spectroanalyzers with measurement error not exceeding 1 %.

It was shown that advantage of the spectral method for analysis of signals of vortex-current transducer is identification of hidden objects by type of metal. The use of spectral methods for detection of hidden metals offers a new property – distant analysis of composition of detected metal objects. 

Author Biographies

Anton Abramovych, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

Department of Radioengineering Devices and Systems

Volodymyr Poddubny, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Аssociate Professor

Department of Radioengineering Devices and Systems

References

  1. Ihamouten, A., Dérobert, X., Villain, G. (2010). Electromagnetic dispersion estimated from multi-offset, ground-penetrating radar. Proceedings of the XIII Internarional Conference on Ground Penetrating Radar. doi: 10.1109/icgpr.2010.5550085
  2. Kozlovskiy, E. A. (Ed.) (1986). Gornaya enciklopediya. Vol. 2. Moscow: Sovetskaya enciklopediya, 575.
  3. Van Sprang, H. A. (2000). Fundamental parameter methods in XRF spectroscopy. Advances in X-ray Analysis, 42.
  4. Obiazi, A. M. O., Anyasi, F. I., Jacdonmi, O., Otubu, P. A., Abhulimen, I. (2010). Implementing a Robust Metal Detector Utilizing the Colpitts Oscillator with Toroidal Coil. Journal of Engineering and Applied Sciences, 5 (2), 56–63. doi: 10.3923/jeasci.2010.56.63
  5. Pravda, V. I., Mrachkovskyi, O. D., Abramovych, A. O. (2015). Heoradary. Visnyk natsionalnoho universytetu «Lvivska politekhnika». Seriya: Radioelektronika ta telekomunikatsyi, 818, 49–54.
  6. Abramovych, A. O. (2014). Radiolokatsiino-vykhrostrumovyi radar. Visnyk NTTU «KPI». Ser.: Radiotekhnika. Radioaparatobuduvannia, 57, 77–82.
  7. Habarov, V. B. (2005). Struktura elektromagnitnogo polya, izluchennogo podzemnym peredatchikom s ramochnoy antennoy, s uchetom blizhney zony rasprostraneniya radiovoln. Radiotekhnika, 3, 80–83.
  8. Shcherbakov, G. N. (2005). Uvelichenie predel'noy glubiny obnaruzheniya lokal'nyh ferromagnitnyh ob'ektov v tolshche provodyashchih ukryvayushchih sred metodom distancionnogo parametricheskogo podmagnichivaniya. Radiotekhnika, 12, 42–45.
  9. Shcherbakov, G. N. (2005). Vybor elektromagnitnogo metoda zondirovaniya dlya poiska ob'ektov v tolshche ukryvayushchih sred. Radiotekhnika, 3, 77–79.
  10. Suhorukov, V. V. (Ed.) (1992). Nerazrushayushchiy kontrol'. Vol. 3. Moscow: Vyssh. shk., 312.
  11. Ayficher, E., Dzhervis, B. (2004). Cifrovaya obrabotka signalov. Prakticheskiy podhod. Moscow: Vil'yams, 992.
  12. Jol, M. H. (2009). Ground Penetrating Radar Theory and Applications. Oxford GB.: Elsevier B.V., 544.
  13. Rumshiskiy, L. Z. (1971). Matematicheskaya obrabotka rezul'tatov eksperimenta. Moscow: Nauka, Glav. red. fiz-mat. lit., 192.
  14. Abramovych, A. O., Mrachkovskyi, O. D., Furmanchuk, V. Yu. (2017). Dykhotomichne rozriznennia metalu na chornyi-kolorovyi za dopomohoiu spektralnoho analizu. Visnyk Zhytomyrskoho derzhavnoho tekhnolohichnoho universytetu. Ser.: Tekhnichni nauky, 1 (79), 48–51.
  15. Svatoš, J. (2015). Advanced Instrumentation for Polyharmonic Metal Detectors. Prague, 121.
  16. Bazhenov, V. G., Yakimchuk, N. A., Gruzin, S. V., Pidlisna, I. S. (2014). Metod i apparatura dlya izmereniya napryazhennosti elektricheskih poley pri geologo-geofizicheskih issledovaniyah. Zb. nauk. prats Teoretychni ta prykladni aspekty heoinformatyky, 17–30.
  17. Kang, W., Kim, C. R., Kim, J. H., Park, S. G., Cho, S. J., Son, J. S., Kim, K. W. (2016). A study of antenna configuration for bistatic ground-penetrating radar. 2016 16th International Conference on Ground Penetrating Radar (GPR). doi: 10.1109/icgpr.2016.7572697

Downloads

Published

2017-10-30

How to Cite

Abramovych, A., & Poddubny, V. (2017). Application of spectral analysis for differentiation between metals using signals from eddy-current transducers. Eastern-European Journal of Enterprise Technologies, 5(5 (89), 51–57. https://doi.org/10.15587/1729-4061.2017.110177

Issue

Section

Applied physics