Optimization of fuzzy classification knowledge bases using improving transformations

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.110261

Keywords:

fuzzy knowledge base optimization, min-max clustering, solving fuzzy relational equations

Abstract

The method of fuzzy classification knowledge base optimization using improving transformations in the form of solutions of fuzzy relational equations is proposed. The logic-algorithmic models of improving transformations are developed, on the basis of which the genetic algorithm of fuzzy knowledge base optimization is proposed.

Methods of rule generation and selection differ in computational complexity due to the redundancy of the initial model. The methods of candidate rule generation do not guarantee the optimum number of rules and optimum granularity of input variables. The selection process becomes more complicated with increasing number of criteria, in particular, when taking into account the rule length.

Improving transformations are: transition to a composite model for selecting output classes and rules; transition to a relational model for selecting input terms. The min-max clustering problem is solved by generating composite rules in the form of interval solutions of the trend system of equations. The number of rules in a class is determined by the number of solutions, and the granularity is determined by intervals of values of input variables in rules. The set of minimum solutions provides the minimum rule length. Linguistic interpretation of the solutions obtained is reduced to solving the relational clustering problem. The level of detail and the density of coverage are determined by the “input terms – output classes” relational matrix, and the dimensions of hyperboxes are tuned using triangular membership functions.

Improving transformations allow formalizing the process of fuzzy knowledge base generation and selection. Each improving transformation is related to the control variables (the number of terms, classes, rules) that affect the accuracy and complexity of the model. At the same time, consistent use of composite and relational improving transformations provides tuning process simplification.

Author Biography

Hanna Rakytyanska, Vinnytsia National Technical University Khmelnytske shose str., 95, Vinnytsia, Ukraine, 21021

PhD, Associate Professor

Department of software design

References

  1. Rotshtein, A., Kuznetsov, P. (1992). Design of faultless man-machine technologies. Kyiv: Tehnika, 180.
  2. Rotshtein, A., Shtovba, S., Kozachko, A. (2007). Modeling and optimization of multivariable algorithmic processes reliability. Vinnytsia: UNIVERSUM, 215.
  3. Glushkov, V., Tceitlin, G., Ucshenko, E. (1989). Algebra. Languages. Programming. Kyiv: Naukova Dumka, 376.
  4. Ishibuchi, H., Nojima, Y. (2007). Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. International Journal of Approximate Reasoning, 44(1), 4–31. doi:10.1016/j.ijar.2006.01.004
  5. Bargiela, A., Pedrycz, W. (2013). Optimised Information Abstraction in Granular Min/Max Clustering. Vol. 13. Smart Innovation, Systems and Technologies, 31–48. doi:10.1007/978-3-642-28699-5_3
  6. Fazzolari, M., Alcala, R., Nojima, Y., Ishibuchi, H., Herrera, F. (2013). A Review of the Application of Multiobjective Evolutionary Fuzzy Systems: Current Status and Further Directions. IEEE Transactions on Fuzzy Systems, 21(1), 45–65. doi:10.1109/tfuzz.2012.2201338
  7. Fazzolari, M., Alcalá, R., Herrera, F. (2014). A multi-objective evolutionary method for learning granularities based on fuzzy discretization to improve the accuracy-complexity trade-off of fuzzy rule-based classification systems: D-MOFARC algorithm. Applied Soft Computing, 24, 470–481. doi:10.1016/j.asoc.2014.07.019
  8. Seera, M., Lim, C. P., Loo, C. K., Singh, H. (2015). A modified fuzzy min–max neural network for data clustering and its application to power quality monitoring. Applied Soft Computing, 28, 19–29. doi: 10.1016/j.asoc.2014.09.050
  9. Reyes-Galaviz, O. F., Pedrycz, W. (2015). Granular fuzzy modeling with evolving hyperboxes in multi-dimensional space of numerical data. Neurocomputing, 168, 240–253. doi:10.1016/j.neucom.2015.05.102
  10. Rudziński, F. (2016). A multi-objective genetic optimization of interpretability-oriented fuzzy rule-based classifiers. Applied Soft Computing, 38, 118–133. doi:10.1016/j.asoc.2015.09.038
  11. Rey, M. I., Galende, M., Fuente, M. J., Sainz-Palmero, G. I. (2017). Multi-objective based Fuzzy Rule Based Systems (FRBSs) for trade-off improvement in accuracy and interpretability: A rule relevance point of view. Knowledge-Based Systems, 127, 67–84. doi:10.1016/j.knosys.2016.12.028
  12. Cruz-Reyes, L., Fernandez, E., Sanchez, P., Coello Coello, C. A., Gomez, C. (2017). Incorporation of implicit decision-maker preferences in multi-objective evolutionary optimization using a multi-criteria classification method. Applied Soft Computing, 50, 48–57. doi:10.1016/j.asoc.2016.10.037
  13. Ahmed, M. M., Isa, N. A. M. (2017). Knowledge base to fuzzy information granule: A review from the interpretability-accuracy perspective. Applied Soft Computing, 54, 121–140. doi:10.1016/j.asoc.2016.12.055
  14. Bandaru, S., Ng, A. H. C., Deb, K. (2017). Data mining methods for knowledge discovery in multi-objective optimization: Part A – Survey. Expert Systems with Applications, 70, 139–159. doi:10.1016/j.eswa.2016.10.015
  15. Zhang, S., Zhu, J., Liu, X., Chen, Y., Ma, Z. (2017). Adaptive consensus model with multiplicative linguistic preferences based on fuzzy information granulation. Applied Soft Computing, 60, 30–47. doi:10.1016/j.asoc.2017.06.028
  16. Hu, X., Pedrycz, W., Wang, X. (2017). From fuzzy rule-based models to their granular generalizations. Knowledge-Based Systems, 124, 133–143. doi:10.1016/j.knosys.2017.03.007
  17. Rotshtein, A., Rakytyanska, H.; Sarma, R. D. (Ed.) (2011). Fuzzy logic and the least squares method in diagnosis problem solving. Genetic diagnoses. New York: Nova Science Publishers, 53–97.
  18. Rotshtein, A. P., Rakytyanska, H. B. (2012). Fuzzy evidence in identification, forecasting and diagnosis. Heidelberg: Springer, 314. doi: 10.1007/978-3-642-25786-5
  19. Rotshtein, A., Rakytyanska, H. (2013). Expert rules refinement by solving fuzzy relational equations. 2013 6th International Conference on Human System Interactions (HSI). doi:10.1109/hsi.2013.6577833
  20. Rotshtein, A. P., Rakytyanska, H. B. (2014). Optimal Design of Rule-Based Systems by Solving Fuzzy Relational Equations. Vol. 559. Studies in Computational Intelligence, 167–178. doi:10.1007/978-3-319-06883-1_14
  21. Rakytyanska, H. B. (2015). Fuzzy classification knowledge base construction based on trend rules and inverse inference. Eastern-European Journal of Enterprise Technologies, 1 (3 (73)), 25–32. doi: 10.15587/1729-4061.2015.36934
  22. Rotshtein, A. P., Rakytyanska, H. B. (2012). Fuzzy Genetic Object Identification: Multiple Inputs/Multiple Outputs Case. Vol. 99. Advances in Intelligent and Soft Computing, 375–394. doi:10.1007/978-3-642-23172-8_25
  23. Rakytyanska, H. (2017). Optimization of knowledge bases on the basis of fuzzy relations by the criteria “accuracy – complexity.” Eastern-European Journal of Enterprise Technologies, 2(4 (86)), 24–31. doi:10.15587/1729-4061.2017.95870
  24. Singh, K. (2015). Facebook comment volume prediction. International Journal of Simulation: Systems, Science and Technology, 16 (5), 16.1–16.9.
  25. Lichman, M. (2013). UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science. Available at: https://archive.ics.uci.edu/ml/citation_policy.html

Downloads

Published

2017-10-30

How to Cite

Rakytyanska, H. (2017). Optimization of fuzzy classification knowledge bases using improving transformations. Eastern-European Journal of Enterprise Technologies, 5(2 (89), 33–41. https://doi.org/10.15587/1729-4061.2017.110261