Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors

Authors

  • Vadym Kovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732
  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0001-8879-7189

DOI:

https://doi.org/10.15587/1729-4061.2017.110390

Keywords:

nickel hydroxide, high crystallinity, specific capacity, supercapacitor, alkaline accumulator, particle aggregate breakdown, decomposition method

Abstract

Nickel hydroxide is widely used as an active material for alkaline accumulators and hybrid supercapacitors. One of the main parameters of the accumulator and supercapacitor operation is the stability of characteristics. -Ni(OH)2 is the most stable form of nickel hydroxide. To evaluate the effectiveness of using -Ni(OH)2 with high crystallinity in secondary cells and supercapacitors, the method of ultracrystalline-Ni(OH)2 synthesis by slow decomposition of tetraammine nickel hydroxide has been developed. Structural properties of the samples were studied by means of X-ray diffraction and specific surface area was calculated using the BET method from nitrogen desorption experiments. A comparative study of characteristics of ultracrystalline and highly crystalline commercial samples, by means of galvanostatic charge-discharge cycling in the accumulator and supercapacitor regimes was conducted. Low electrochemical effectiveness (coulombic efficiency of 35 %, specific capacity of 101.2 mA·h/g) of ultracrystalline -Ni(OH)2 in accumulator regime was demonstrated. It was discovered, that ultracrystalline -Ni(OH)2, prepared with the decomposition method has high specific characteristics in the supercapacitor regime. At high cycling current densities (40–120 mA/cm2), specific capacities greatly increase, which is explained by the breakdown of hydroxide particle aggregates to smaller ones with an increase of specific surface area. The highest achieved capacities are 120.4 mA·h/g and 276 F/g.

Author Biographies

Vadym Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

References

  1. Posada, J. O. G., Rennie, A. J. R., Villar, S. P., Martins, V. L., Marinaccio, J., Barnes, A. et. al. (2017). Aqueous batteries as grid scale energy storage solutions. Renewable and Sustainable Energy Reviews, 68, 1174–1182. doi: 10.1016/j.rser.2016.02.024
  2. Simon, P., Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7 (11), 845–854. doi: 10.1038/nmat2297
  3. Burke, A. (2007). R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta, 53 (3), 1083–1091. doi: 10.1016/j.electacta.2007.01.011
  4. Lang, J.-W., Kong, L.-B., Liu, M., Luo, Y.-C., Kang, L. (2009). Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 14 (8), 1533–1539. doi: 10.1007/s10008-009-0984-1
  5. Lang, J.-W., Kong, L.-B., Wu, W.-J., Liu, M., Luo, Y.-C., Kang, L. (2008). A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 13 (2), 333–340. doi: 10.1007/s10008-008-0560-0
  6. Aghazadeh, M., Ghaemi, M., Sabour, B., Dalvand, S. (2014). Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 18 (6), 1569–1584. doi: 10.1007/s10008-014-2381-7
  7. Hu, M., Lei, L. (2006). Effects of particle size on the electrochemical performances of a layered double hydroxide, [Ni4Al(OH)10]NO3. Journal of Solid State Electrochemistry, 11 (6), 847–852. doi: 10.1007/s10008-006-0231-y
  8. Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: 10.1007/s11771-014-2218-7
  9. Wang, B., Williams, G. R., Chang, Z., Jiang, M., Liu, J., Lei, X., Sun, X. (2014). Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 6 (18), 16304–16311. doi: 10.1021/am504530e
  10. Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: 10.1007/s10008-016-3405-2
  11. Ramesh, T. N., Kamath, P. V., Shivakumara, C. (2005). Correlation of Structural Disorder with the Reversible Discharge Capacity of Nickel Hydroxide Electrode. Journal of The Electrochemical Society, 152 (4), A806. doi: 10.1149/1.1865852
  12. Zhao, Y., Zhu, Z., Zhuang, Q.-K. (2005). The relationship of spherical nano-Ni(OH)2 microstructure with its voltammetric behavior. Journal of Solid State Electrochemistry, 10 (11), 914–919. doi: 10.1007/s10008-005-0035-5
  13. Jayashree, R. S., Kamath, P. V., Subbanna, G. N. (2000). The Effect of Crystallinity on the Reversible Discharge Capacity of Nickel Hydroxide. Journal of The Electrochemical Society, 147 (6), 2029. doi: 10.1149/1.1393480
  14. Jayashree, R. S., Kamath, P. V. (1999). Factors governing the electrochemical synthesis of a-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29 (4), 449–454.
  15. Ramesh, T. N., Kamath, P. V. (2006). Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 156 (2), 655–661. doi: 10.1016/j.jpowsour.2005.05.050
  16. Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: 10.1039/a905651c
  17. Hu, M., Yang, Z., Lei, L., Sun, Y. (2011). Structural transformation and its effects on the electrochemical performances of a layered double hydroxide. Journal of Power Sources, 196 (3), 1569–1577. doi: 10.1016/j.jpowsour.2010.08.041
  18. Solovov, V., Kovalenko, V., Nikolenko, N., Kotok, V., Vlasova, E. (2017). Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 16–22. doi: 10.15587/1729-4061.2017.90873
  19. Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: 10.15587/1729-4061.2017.106813
  20. Kovalenko, V., Kotok, V. (2017). Obtaining of Ni-Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: 10.15587/1729-4061.2017.95699
  21. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: 10.15587/1729-4061.2017.108839
  22. Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: 10.15587/1729-4061.2017.97371
  23. Kotok, V., Kovalenko, V. (2017). Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 38–43. doi: 10.15587/1729-4061.2017.103010
  24. Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017) Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.
  25. Vidotti, M., Torresi, R., de Torresi, S. I. C. (2010). Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries. Química Nova, 33 (10), 2176–2186. doi: 10.1590/s0100-40422010001000030
  26. Кovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: 10.15587/1729-4061.2016.79406
  27. Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., MacDougall, B. R. (2012). Raman and Infrared Spectroscopy of α and β Phases of Thin Nickel Hydroxide Films Electrochemically Formed on Nickel. The Journal of Physical Chemistry A, 116 (25), 6771–6784. doi: 10.1021/jp303546r
  28. Hermet, P., Gourrier, L., Bantignies, J.-L., Ravot, D., Michel, T., Deabate, S. et. al. (2011). Dielectric, magnetic, and phonon properties of nickel hydroxide. Physical Review B, 84 (23). doi: 10.1103/physrevb.84.235211
  29. Gourrier, L., Deabate, S., Michel, T., Paillet, M., Hermet, P., Bantignies, J.-L., Henn, F. (2011). Characterization of Unusually Large “Pseudo-Single Crystal” of β-Nickel Hydroxide. The Journal of Physical Chemistry C, 115 (30), 15067–15074. doi: 10.1021/jp203222t
  30. Li, Q., Ni, H., Cai, Y., Cai, X., Liu, Y., Chen, G. et. al. (2013). Preparation and supercapacitor application of the single crystal nickel hydroxide and oxide nanosheets. Materials Research Bulletin, 48 (9), 3518–3526. doi: 10.1016/j.materresbull.2013.05.049
  31. Vasserman, I. N. (1980). Khimicheskoe osazdenie is rastvorov [Chemical precipitation from solutions]. Leningrad: Khimia, 208
  32. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: 10.1007/s11029-014-9408-0
  33. Kotok, V., Kovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: 10.15587/1729-4061.2017.90810

Downloads

Published

2017-10-30

How to Cite

Kovalenko, V., & Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5(6 (89), 17–22. https://doi.org/10.15587/1729-4061.2017.110390

Issue

Section

Technology organic and inorganic substances