Research into surface properties of disperse fillers based on plant raw materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.111350

Keywords:

disperse filler, plant raw materials, composite material, surface active centre, acid­base properties

Abstract

The properties of the dispersed fillers are investigated based on the agricultural and wood industry wastes: buckwheat and oats husk, wood and pine­needle flour. We experimentally determined structural­rheological characteristics, morphology and acid­base properties of the surface. By applying a potentiometric determining of hydrogen indicator of aqueous suspensions рНsusp., we studied the qualitative and quantitative characteristics of acid­base active centers on the surface of the particles of fillers. It was revealed that the surface of buckwheat husk is dominated by two types of active centers: weakly­acidic (рKа≈5.53–5.83) and close to neutral (рKа≈6.16–6.30). The surfaces of wood flour and pine­needle flour are characterized as the weakly­acidic with centers рKа≈5.29–5.52 and рKа≈5.02–5.36, respectively. Based on sources from the scientific literature, we compiled a comparative characteristic of the chemical composition of the examined fillers. A correlation is established between chemical composition, physical­chemical and surface properties. It is shown that the total mass content of cellulose and lignin can be one of the criteria for evaluating resistance of the fillers to high temperatures and acidic­base properties. A decrease in the sum of mass content of cellulose and lignin in the composition of fillers results in the improved thermal resistance while the surface acidity decreases. The results obtained allow us to predict behaviour of the fillers in compositions and control performance characteristics of composite materials.

Author Biographies

Yuliya Danchenko, Kharkiv National University of Civil Engineering and Architecture Sumska str., 40, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of General Chemistry

 

Vladimir Andronov, National University of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Research Center

Artem Kariev, Kharkiv National University of Civil Engineering and Architecture Sumska str., 40, Kharkiv, Ukraine, 61002

Postgraduate student

Department of General Chemistry

Vladimir Lebedev, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Technology of Plastics and biological active polymer

Evgeniy Rybka, National University of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Research Center

Ruslan Meleshchenko, National University of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Department of fire and rescue training

Dayana Yavorska, V. N. Karazin Kharkiv National University Svobody sq., 4, Kharkiv, Ukraine, 61022

Department of Ecological Safety and Environmental Education

References

  1. Klesov, A. A. (2010). Drevesno-polimernye kompozity. Sankt-Peterburg: Nauchnye osnovy i tekhnologi, 736.
  2. Dikobe, D. G., Luyt, A. S. (2006). Effect of filler content and size on the properties of ethylene vinyl acetate copolymer–wood fiber composites. Journal of Applied Polymer Science, 103 (6), 3645–3654. doi: 10.1002/app.25513
  3. Nwabunma, D., Kyu, T. (Eds.) (2007). Polyolefin composites. John Wiley & Sons, Inc., 603. doi: 10.1002/9780470199039
  4. Shkuro, A. E., Gluhih, V. V., Muhin, N. M. (2016). Poluchenie i izuchenie drevesno-polimernyh kompozitov s napolnitelyami iz othodov rastitel'nogo proiskhozhdeniya. Lesnoy vestnik, 3, 101–105.
  5. Kariev, A. I., Danchenko, Yu. M. (2016). Perspektyvy vykorystannia roslynnykh vidkhodiv u vyrobnytstvi polimernykh kompozytiv. Materialy IX Mizhnarodnoi naukovo-tekhnichnoi WEB-konferentsii «Kompozytsiini materialy». Kyiv, 81–82.
  6. Kariev, A. I., Yu. M. Danchenko (2016). Vplyv pryrody dyspersnykh orhanichnykh napovniuvachiv na fizyko-mekhanichni vlastyvosti kompozytiv z vtorynnoho polipropilenu. Materialy II Mizhnarodnoi naukovo-tekhnichnoi Internet-konferentsyi «Resursozberezhennia ta enerhoefektyvnist inzhenernoi infrastruktury urbanizovanykh terytoryi ta promyslovykh pidpryiemstv». Kharkiv: KhNUHKh im. A. N. Beketova, 104–107.
  7. Zini, E., Scandola, M. (2011). Green composites: An overview. Polymer Composites, 32 (12), 1905–1915. doi: 10.1002/pc.21224
  8. Petchwattana, N., Covavisaruch, S. (2013). Effects of Rice Hull Particle Size and Content on the Mechanical Properties and Visual Appearance of Wood Plastic Composites Prepared from Poly(vinyl chloride). Journal of Bionic Engineering, 10 (1), 110–117. doi: 10.1016/s1672-6529(13)60205-x
  9. Lim, L. A., Makeich, D. A., Prishchenko, N. A., Zabolotnaya, A. M., Reutov, V. A., Kovaleva, E. V. (2015). Poluchenie lignocellyuloznyh polimernyh kompozitov na osnove grechnevoy sheluhi i poliehtilena. Mezhdunarodnyy zhurnal prikladnyh i ehksperimental'nyh issledovaniy, 6, 514–514.
  10. Reutov, V. A., Lim, L. A., Zabolotnaya, A. M., Prishchenko, N. A., Anufriev, A. V., Pustovalov, E. V. (2016). Vliyanie sostava napolnitelya na svoystva lignocellyuloznogo polimernogo kompozicionnogo materiala. Sb. materialov Vtorogo mezhdisciplinarnogo molodezhnogo nauchnogo foruma s mezhdunarodnym uchastiem «Novye materialy». Moscow: Interkontaktnauka, 69–71.
  11. Yan, L., Chouw, N., Jayaraman, K. (2014). Flax fibre and its composites – A review. Composites Part B: Engineering, 56, 296–317. doi: 10.1016/j.compositesb.2013.08.014
  12. Bajwa, S. G., Bajwa, D. S., Holt, G., Coffelt, T., Nakayama, F. (2011). Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Industrial Crops and Products, 33 (3), 747–755. doi: 10.1016/j.indcrop.2011.01.017
  13. Binhussain, M. A., El-Tonsy, M. M. (2013). Palm leave and plastic waste wood composite for out-door structures. Construction and Building Materials, 47, 1431–1435. doi: 10.1016/j.conbuildmat.2013.06.031
  14. Kengkhetkit, N., Amornsakchai, T. (2014). A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Materials & Design, 55, 292–299. doi: 10.1016/j.matdes.2013.10.005
  15. Mattos, B. D., Misso, A. L., de Cademartori, P. H. G., de Lima, E. A., Magalhães, W. L. E., Gatto, D. A. (2014). Properties of polypropylene composites filled with a mixture of household waste of mate-tea and wood particles. Construction and Building Materials, 61, 60–68. doi: 10.1016/j.conbuildmat.2014.02.022
  16. Zemnuhova, L. A., V. V. Budaeva, G. A. Fedorishcheva, T. A. Kaydalova, L. N. Kurilenko, E. D. Shkorina, S. G. Il'yasov (2009). Neorganicheskie komponenty solomy i sheluhi ovsa. Himiya rastitel'nogo syr'ya, 1, 147–152.
  17. Zemnuhova, L. A., Makarenko, N. V., Tishchenko, L. Ya., Kovaleva, E. V. (2009). Issledovanie aminokislotnogo sostava v othodah proizvodstva risa, grechihi i podsolnechnika. Himiya rastitel'nogo syr'ya, 3, 147–149.
  18. Yamansarova, E. T., Gromyko, N. V., Abdullin, M. I., Kukovinec, O. S., Zvorygina, O. B. (2016). Issledovanie sorbcionnyh svoystv materialov na osnove rastitel'nogo syr'ya po otnosheniyu k organicheskim i neorganicheskim primesyam. Vestnik Bashkirskogo universiteta, 21 (1), 73–77.
  19. Li, F.-Z., Lu, Z.-L., Yang, Z.-H., Qi, K. (2015). Surface interaction energy simulation of ceramic materials with epoxy resin. Polimery, 60 (07/08), 468–471. doi: 10.14314/polimery.2015.468
  20. Danchenko, Yu. M. (2017). Regulation of free surface energy of epoxy polymer materials using mineral fillers. Polymer materials and technologies, 3 (2), 56–63.
  21. Glazkov, S. S., Kozlov, V. A., Pozhidaeva, A. E., Rudakov, O. B. (2009). Poverhnostnye ehnergeticheskie harakteristiki kompozitov na osnove prirodnyh polimerov. Sorbcionnye i hromatograficheskie processy, 1 (1), 58–66.
  22. Starostina, I. A., Stoyanov, O. V. (2010). Kislotno-osnovnye vzaimodeystviya i adgeziya v metall-polimernyh sistemah. Kazan': Izd-vo Kazan. gos. Tekhnol. un-ta, 200.
  23. Barabash, E. S., Popov, Yu. V., Danchenko, Yu. M. (2015). Vliyanie modificiruyushchih dobavok na adgezionnuyu sposobnost' ehpoksiaminnyh svyazuyushchih k alyumoborsilikatnomu steklu i stali. Naukovyi visnyk budivnytstva, 4 (82), 122–128.
  24. Danchenko, Yu. M., Popov, Yu. V., Barabash, O. S. (2016). Vplyv kyslotno-osnovnykh vlastyvostei poverkhni poli mineralnykh napovniuvachiv na strukturu ta kharakterystyky epoksykompozytiv. Voprosy himii i himicheskoy tekhnologii, 3 (107), 53–60.
  25. Andronov, V. A., Danchenko, Yu. M., Skripinets, A. V., Bukchman, O. M. (2013). Efficiency of utilization of vibration-absorbing polimer coating for reducing local vibration. Scientific Bulletin of National Mining University, 6, 85–91.
  26. Osipchik, V. S., Yakovleva, R. A., Danchenko, Yu. M., Kachomanova, M. P., Bykov, R. A., Posohova, I. A. (2007). Issledovanie vliyaniya poverhnostnyh svoystv bentonita na processy otverzhdeniya ehpoksiaminnyh kompoziciy. Uspekhi v himii i himicheskoy tekhnologii, XXI (6 (74)), 40–43.
  27. Yamansarova, E. T., Gromyko, N. V., Abdullin, M. I., Kukovinec, O. S., Zvorygina, O. B. (2015). Issledovanie sorbcionnyh svoystv materialov na osnove rastitel'nogo syr'ya po otnosheniyu k neftyanym zagryazneniyam vody. Vestnik Bashkirskogo universiteta, 20 (4), 1209–1212.
  28. Lysak, I. A., Lysak, G. V., Malinovskaya, T. D., Skvorcova, L. N., Potekaev, A. I. (2013). Issledovanie kislotno-osnovnyh svoystv poverhnosti polimernyh voloknistyh materialov. Pis'ma o materialah, 3 (4), 300–303.
  29. Baranova, N. V., Pashina, L. A., Osipova, E. G. (2013). Vzaimosvyaz' himicheskoy struktury poverhnosti polimerov vinilovogo ryada s poverhnostnymi kislotno-osnovnymi harakteristikami. Vestnik Kazanskogo tekhnologicheskogo universiteta, 16 (21), 171−175.
  30. Zenkiewicz, M. (2007). Methods for the calculation of surface free energy of solids. Journal of Achievements in Materials and Manufacturing Engineering, 24 (1), 137−145.
  31. Hejda, F., Solar, P., Kousal, J. (2010). Surface free energy determination by contact angle measurements – a comparison of various approaches. WDS’10 Proceeding of Contributed Papers. Prague, 25–30.
  32. Ikonnikova, K. V., Ikonnikova, L. F., Minakova, T. S., Sarkisov, Yu. S. (2011). Teoriya i praktika rN-metricheskogo opredeleniya kislotno-osnovnyh svoystv poverhnosti tverdyh tel. Tomsk: Izd-vo Tomsk. politekhn. un-ta, 85.
  33. Kariev, A. I., Danchenko, Yu. M., Yavorska, D. H. (2016). Vlastyvosti orhanichnykh napovniuvachiv derevno-polimernykh kompozytiv budivelnoho pryznachennia. Naukovyi visnyk budivnytstva, 86 (4), 160–164.
  34. Osadchuk, L. S. (2015). Vmist terpenovykh vuhlevodniv u khvoi sosny zvychainoi riznoi katehoryi smoloproduktyvnosti. Naukovyi visnyk NLHU Ukrainy, 25.3, 16–21.
  35. Mitrofanov, L. Yu., Zolotuhin, V. N., Budaeva, V. V. (2010). Izuchenie himicheskogo sostava vodnogo ehkstrakta solomy ovsa (AVENA SATIVA L.) i issledovanie ego rostoreguliruyushchih svoystv. Polzunovskiy Vestnik, 4-1,. 174–179.
  36. Tarasevich, Yu. I. (2011). Poverhnostnye yavleniya na dispersnyh materialah. Kyiv: Naukova dumka, 390.
  37. Danchenko, Yu., Andronov, V., Rybka, E., Skliarov, S. (2017). Investigation into acid-basic equilibrium on the surface of oxides with various chemical nature. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 17–25. doi: 10.15587/1729-4061.2017.108946

Downloads

Published

2017-10-31

How to Cite

Danchenko, Y., Andronov, V., Kariev, A., Lebedev, V., Rybka, E., Meleshchenko, R., & Yavorska, D. (2017). Research into surface properties of disperse fillers based on plant raw materials. Eastern-European Journal of Enterprise Technologies, 5(12 (89), 20–26. https://doi.org/10.15587/1729-4061.2017.111350

Issue

Section

Materials Science