Research into surface properties of disperse fillers based on plant raw materials
DOI:
https://doi.org/10.15587/1729-4061.2017.111350Keywords:
disperse filler, plant raw materials, composite material, surface active centre, acidbase propertiesAbstract
The properties of the dispersed fillers are investigated based on the agricultural and wood industry wastes: buckwheat and oats husk, wood and pineneedle flour. We experimentally determined structuralrheological characteristics, morphology and acidbase properties of the surface. By applying a potentiometric determining of hydrogen indicator of aqueous suspensions рНsusp., we studied the qualitative and quantitative characteristics of acidbase active centers on the surface of the particles of fillers. It was revealed that the surface of buckwheat husk is dominated by two types of active centers: weaklyacidic (рKа≈5.53–5.83) and close to neutral (рKа≈6.16–6.30). The surfaces of wood flour and pineneedle flour are characterized as the weaklyacidic with centers рKа≈5.29–5.52 and рKа≈5.02–5.36, respectively. Based on sources from the scientific literature, we compiled a comparative characteristic of the chemical composition of the examined fillers. A correlation is established between chemical composition, physicalchemical and surface properties. It is shown that the total mass content of cellulose and lignin can be one of the criteria for evaluating resistance of the fillers to high temperatures and acidicbase properties. A decrease in the sum of mass content of cellulose and lignin in the composition of fillers results in the improved thermal resistance while the surface acidity decreases. The results obtained allow us to predict behaviour of the fillers in compositions and control performance characteristics of composite materials.
References
- Klesov, A. A. (2010). Drevesno-polimernye kompozity. Sankt-Peterburg: Nauchnye osnovy i tekhnologi, 736.
- Dikobe, D. G., Luyt, A. S. (2006). Effect of filler content and size on the properties of ethylene vinyl acetate copolymer–wood fiber composites. Journal of Applied Polymer Science, 103 (6), 3645–3654. doi: 10.1002/app.25513
- Nwabunma, D., Kyu, T. (Eds.) (2007). Polyolefin composites. John Wiley & Sons, Inc., 603. doi: 10.1002/9780470199039
- Shkuro, A. E., Gluhih, V. V., Muhin, N. M. (2016). Poluchenie i izuchenie drevesno-polimernyh kompozitov s napolnitelyami iz othodov rastitel'nogo proiskhozhdeniya. Lesnoy vestnik, 3, 101–105.
- Kariev, A. I., Danchenko, Yu. M. (2016). Perspektyvy vykorystannia roslynnykh vidkhodiv u vyrobnytstvi polimernykh kompozytiv. Materialy IX Mizhnarodnoi naukovo-tekhnichnoi WEB-konferentsii «Kompozytsiini materialy». Kyiv, 81–82.
- Kariev, A. I., Yu. M. Danchenko (2016). Vplyv pryrody dyspersnykh orhanichnykh napovniuvachiv na fizyko-mekhanichni vlastyvosti kompozytiv z vtorynnoho polipropilenu. Materialy II Mizhnarodnoi naukovo-tekhnichnoi Internet-konferentsyi «Resursozberezhennia ta enerhoefektyvnist inzhenernoi infrastruktury urbanizovanykh terytoryi ta promyslovykh pidpryiemstv». Kharkiv: KhNUHKh im. A. N. Beketova, 104–107.
- Zini, E., Scandola, M. (2011). Green composites: An overview. Polymer Composites, 32 (12), 1905–1915. doi: 10.1002/pc.21224
- Petchwattana, N., Covavisaruch, S. (2013). Effects of Rice Hull Particle Size and Content on the Mechanical Properties and Visual Appearance of Wood Plastic Composites Prepared from Poly(vinyl chloride). Journal of Bionic Engineering, 10 (1), 110–117. doi: 10.1016/s1672-6529(13)60205-x
- Lim, L. A., Makeich, D. A., Prishchenko, N. A., Zabolotnaya, A. M., Reutov, V. A., Kovaleva, E. V. (2015). Poluchenie lignocellyuloznyh polimernyh kompozitov na osnove grechnevoy sheluhi i poliehtilena. Mezhdunarodnyy zhurnal prikladnyh i ehksperimental'nyh issledovaniy, 6, 514–514.
- Reutov, V. A., Lim, L. A., Zabolotnaya, A. M., Prishchenko, N. A., Anufriev, A. V., Pustovalov, E. V. (2016). Vliyanie sostava napolnitelya na svoystva lignocellyuloznogo polimernogo kompozicionnogo materiala. Sb. materialov Vtorogo mezhdisciplinarnogo molodezhnogo nauchnogo foruma s mezhdunarodnym uchastiem «Novye materialy». Moscow: Interkontaktnauka, 69–71.
- Yan, L., Chouw, N., Jayaraman, K. (2014). Flax fibre and its composites – A review. Composites Part B: Engineering, 56, 296–317. doi: 10.1016/j.compositesb.2013.08.014
- Bajwa, S. G., Bajwa, D. S., Holt, G., Coffelt, T., Nakayama, F. (2011). Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Industrial Crops and Products, 33 (3), 747–755. doi: 10.1016/j.indcrop.2011.01.017
- Binhussain, M. A., El-Tonsy, M. M. (2013). Palm leave and plastic waste wood composite for out-door structures. Construction and Building Materials, 47, 1431–1435. doi: 10.1016/j.conbuildmat.2013.06.031
- Kengkhetkit, N., Amornsakchai, T. (2014). A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Materials & Design, 55, 292–299. doi: 10.1016/j.matdes.2013.10.005
- Mattos, B. D., Misso, A. L., de Cademartori, P. H. G., de Lima, E. A., Magalhães, W. L. E., Gatto, D. A. (2014). Properties of polypropylene composites filled with a mixture of household waste of mate-tea and wood particles. Construction and Building Materials, 61, 60–68. doi: 10.1016/j.conbuildmat.2014.02.022
- Zemnuhova, L. A., V. V. Budaeva, G. A. Fedorishcheva, T. A. Kaydalova, L. N. Kurilenko, E. D. Shkorina, S. G. Il'yasov (2009). Neorganicheskie komponenty solomy i sheluhi ovsa. Himiya rastitel'nogo syr'ya, 1, 147–152.
- Zemnuhova, L. A., Makarenko, N. V., Tishchenko, L. Ya., Kovaleva, E. V. (2009). Issledovanie aminokislotnogo sostava v othodah proizvodstva risa, grechihi i podsolnechnika. Himiya rastitel'nogo syr'ya, 3, 147–149.
- Yamansarova, E. T., Gromyko, N. V., Abdullin, M. I., Kukovinec, O. S., Zvorygina, O. B. (2016). Issledovanie sorbcionnyh svoystv materialov na osnove rastitel'nogo syr'ya po otnosheniyu k organicheskim i neorganicheskim primesyam. Vestnik Bashkirskogo universiteta, 21 (1), 73–77.
- Li, F.-Z., Lu, Z.-L., Yang, Z.-H., Qi, K. (2015). Surface interaction energy simulation of ceramic materials with epoxy resin. Polimery, 60 (07/08), 468–471. doi: 10.14314/polimery.2015.468
- Danchenko, Yu. M. (2017). Regulation of free surface energy of epoxy polymer materials using mineral fillers. Polymer materials and technologies, 3 (2), 56–63.
- Glazkov, S. S., Kozlov, V. A., Pozhidaeva, A. E., Rudakov, O. B. (2009). Poverhnostnye ehnergeticheskie harakteristiki kompozitov na osnove prirodnyh polimerov. Sorbcionnye i hromatograficheskie processy, 1 (1), 58–66.
- Starostina, I. A., Stoyanov, O. V. (2010). Kislotno-osnovnye vzaimodeystviya i adgeziya v metall-polimernyh sistemah. Kazan': Izd-vo Kazan. gos. Tekhnol. un-ta, 200.
- Barabash, E. S., Popov, Yu. V., Danchenko, Yu. M. (2015). Vliyanie modificiruyushchih dobavok na adgezionnuyu sposobnost' ehpoksiaminnyh svyazuyushchih k alyumoborsilikatnomu steklu i stali. Naukovyi visnyk budivnytstva, 4 (82), 122–128.
- Danchenko, Yu. M., Popov, Yu. V., Barabash, O. S. (2016). Vplyv kyslotno-osnovnykh vlastyvostei poverkhni poli mineralnykh napovniuvachiv na strukturu ta kharakterystyky epoksykompozytiv. Voprosy himii i himicheskoy tekhnologii, 3 (107), 53–60.
- Andronov, V. A., Danchenko, Yu. M., Skripinets, A. V., Bukchman, O. M. (2013). Efficiency of utilization of vibration-absorbing polimer coating for reducing local vibration. Scientific Bulletin of National Mining University, 6, 85–91.
- Osipchik, V. S., Yakovleva, R. A., Danchenko, Yu. M., Kachomanova, M. P., Bykov, R. A., Posohova, I. A. (2007). Issledovanie vliyaniya poverhnostnyh svoystv bentonita na processy otverzhdeniya ehpoksiaminnyh kompoziciy. Uspekhi v himii i himicheskoy tekhnologii, XXI (6 (74)), 40–43.
- Yamansarova, E. T., Gromyko, N. V., Abdullin, M. I., Kukovinec, O. S., Zvorygina, O. B. (2015). Issledovanie sorbcionnyh svoystv materialov na osnove rastitel'nogo syr'ya po otnosheniyu k neftyanym zagryazneniyam vody. Vestnik Bashkirskogo universiteta, 20 (4), 1209–1212.
- Lysak, I. A., Lysak, G. V., Malinovskaya, T. D., Skvorcova, L. N., Potekaev, A. I. (2013). Issledovanie kislotno-osnovnyh svoystv poverhnosti polimernyh voloknistyh materialov. Pis'ma o materialah, 3 (4), 300–303.
- Baranova, N. V., Pashina, L. A., Osipova, E. G. (2013). Vzaimosvyaz' himicheskoy struktury poverhnosti polimerov vinilovogo ryada s poverhnostnymi kislotno-osnovnymi harakteristikami. Vestnik Kazanskogo tekhnologicheskogo universiteta, 16 (21), 171−175.
- Zenkiewicz, M. (2007). Methods for the calculation of surface free energy of solids. Journal of Achievements in Materials and Manufacturing Engineering, 24 (1), 137−145.
- Hejda, F., Solar, P., Kousal, J. (2010). Surface free energy determination by contact angle measurements – a comparison of various approaches. WDS’10 Proceeding of Contributed Papers. Prague, 25–30.
- Ikonnikova, K. V., Ikonnikova, L. F., Minakova, T. S., Sarkisov, Yu. S. (2011). Teoriya i praktika rN-metricheskogo opredeleniya kislotno-osnovnyh svoystv poverhnosti tverdyh tel. Tomsk: Izd-vo Tomsk. politekhn. un-ta, 85.
- Kariev, A. I., Danchenko, Yu. M., Yavorska, D. H. (2016). Vlastyvosti orhanichnykh napovniuvachiv derevno-polimernykh kompozytiv budivelnoho pryznachennia. Naukovyi visnyk budivnytstva, 86 (4), 160–164.
- Osadchuk, L. S. (2015). Vmist terpenovykh vuhlevodniv u khvoi sosny zvychainoi riznoi katehoryi smoloproduktyvnosti. Naukovyi visnyk NLHU Ukrainy, 25.3, 16–21.
- Mitrofanov, L. Yu., Zolotuhin, V. N., Budaeva, V. V. (2010). Izuchenie himicheskogo sostava vodnogo ehkstrakta solomy ovsa (AVENA SATIVA L.) i issledovanie ego rostoreguliruyushchih svoystv. Polzunovskiy Vestnik, 4-1,. 174–179.
- Tarasevich, Yu. I. (2011). Poverhnostnye yavleniya na dispersnyh materialah. Kyiv: Naukova dumka, 390.
- Danchenko, Yu., Andronov, V., Rybka, E., Skliarov, S. (2017). Investigation into acid-basic equilibrium on the surface of oxides with various chemical nature. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 17–25. doi: 10.15587/1729-4061.2017.108946
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Yuliya Danchenko, Vladimir Andronov, Artem Kariev, Vladimir Lebedev, Evgeniy Rybka, Ruslan Meleshchenko, Dayana Yavors'ka
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.