Development of the method for creating explicit integral dynamic models of measuring transducers

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.111444

Keywords:

integral dynamic model, pulse transition function, measuring transducer, differential equation

Abstract

Increasing requirements to measuring transducers lead to the need to improve and propose alternatives of their mathematical description. The application in this case of differential equations of various types testifies to great computational complexity of the given problem statement. In this regard, constructively relevant are the methods for creating integral dynamic models of measuring transducers that enable expansion of the tools for computer simulation.

The method considered in present paper implies determining a pulse transient characteristic and leads to the formation of the operators (cores) of measuring transducers in the form of integral mathematical dependences, that is, explicit integral dynamic models.

The method of obtaining an analytic expression of the pulse transition function of measuring transducers with lumped parameters is represented as a solution to the homogeneous differential equation that corresponds to the specified non-homogeneous differential equation. This technique is easily illustrated on the examples of measuring transducers of the first and second order.

The principle of determining a pulse transient characteristic for measuring transducers with distributed parameters by the assigned equations in partial derivatives is the same as for the case with lumped parameters. 

Author Biographies

Alexander Sytnik, Cherkasy State Technological University Shevchenko blvd., 460, Cherkasy, Ukraine, 18006

PhD, Professor, Head of Department

Department of electrical engineering’s systems

Sergey Protasov, Cherkasy State Technological University Shevchenko blvd., 460, Cherkasy, Ukraine, 18006

PhD, Associate Professor

Department of electrical engineering’s systems

Konstantin Klyuchka, Cherkasy State Technological University Shevchenko blvd., 460, Cherkasy, Ukraine, 18006

PhD, Associate Professor

Department of electrical engineering’s systems

References

  1. Capenko, M. P. (1982). Izmeritel'nye informacionnye sistemy: Struktury i algoritmy, sistemotekhnicheskoe proektirovanie. Moscow: Energoatomizdat, 440.
  2. Granovskiy, V. A. (1984). Dinamicheskie izmereniya: Osnovy metrologicheskogo obespecheniya. Leningrad: Energoatomizdat, 224.
  3. Rudenko, V. S., Sen'ko, V. I., Chizhenko, I. M. (1978). Preobrazovatel'naya tekhnika. Kyiv: Vyshcha shkola, 424.
  4. Lega, Yu. G., Sytnik, A. A., Yuzvenko, V. F., Podgorniy, O. V. (2004). Modelirovanie processov v tekhnicheskih sistemah. Cherkasy: CHGTU, 183.
  5. Close, C. M., Frederick, D. K., Newell, J. C. (2001). Modeling and Analysis of Dynamic Systems. Wiley, 592.
  6. Hayrer, E., Nersett, S., Vanner, G. (1990). Reshenie obyknovennyh differencial'nyh uravneniy. Nezhestkie zadachi. Moscow: Mir, 512.
  7. Stoian, V. A. (2003). Modeliuvannia ta identyfikatsiya dynamiky system iz rozpodilenymy parametramy. Kyiv: VPTs «Kyivskyi universytet», 201.
  8. Sytnik, A. A. (2005). Matematicheskoe opisanie mnogoparametricheskih izmeritel'nyh preobrazovateley posredstvom integral'nyh modeley. Modeliuvannia ta informatsiini tekhnolohyi, 34, 75–80.
  9. Verlan', A. F., Sizikov, V. S. (1986). Integral'nye uravneniya: metody, algoritmy, programmy. Kyiv: Naukova dumka, 544.
  10. Babak, V. P., Eremenko, V. S.; Babaka, V. P. (Ed.) (2014). Teoreticheskie osnovy informacionno-izmeritel'nyh sistem. Kyiv: TOV «Sofіya-A», 832.
  11. Sytnik, A. A. (2003). Approksimaciya mnogoparametricheskih pervichnyh izmeritel'nyh preobrazovateley na osnove metoda naimen'shih kvadratov. Visnyk Cherkaskoho derzhavnoho tekhnolohichnoho universytetu, 4, 86–89.
  12. Sviatnyi, V. A., Moldovanova, O. V., Chut, A. M. (2008). Stan ta perspektyvy rozrobok paralelnykh modeliuiuchykh seredovyshch dlia skladnykh dynamichnykh system z rozpodilenymy ta zoseredzhenymy parametramy. Vol. 1. Sbornik trudov konferencii "Modelirovanie-2008 (Simulation-2008)". Kyiv, 25–37.
  13. Hulkó, G., Belavý, C., Ondrejkovič, K., Bartalský, L., Bartko, M. (2017). Control of technological and production processes as distributed parameter systems based on advanced numerical modeling. Control Engineering Practice, 66, 23–38. doi: 10.1016/j.conengprac.2017.05.010
  14. Murtaza, S. S., Khreich, W., Hamou-Lhadj, A., Bener, A. B. (2016). Mining trends and patterns of software vulnerabilities. Journal of Systems and Software, 117, 218–228. doi: 10.1016/j.jss.2016.02.048
  15. Sytnik, A. A., Kozak, A. V. (2006). Algoritm formirovaniya differencial'nogo uravneniya izmeritel'nogo preobrazovatelya. Visnyk Cherkaskoho derzhavnoho tekhnolohichnoho universytetu, 3, 84–87.
  16. Lal, H. P., Godbole, S. M., Dubey, J. K., Sarkar, S., Gupta, S. (2016). Reduced Order Models in Analysis of Stochastically Parametered Linear Dynamical Systems. Procedia Engineering, 144, 1325–1331. doi: 10.1016/j.proeng.2016.05.161
  17. Protasov, S. Yu. (2010). Dinamicheskie harakteristiki lineynyh ob'ektov s peremennymi parametrami. Modeliuvannia ta informatsiyni tekhnolohyi, 56, 64–71.
  18. Faraji, M., Voit, E. O. (2017). Nonparametric dynamic modeling. Mathematical Biosciences, 287, 130–146. doi: 10.1016/j.mbs.2016.08.004
  19. Ikonnikov, O. A. (2013). Issledovanie neparametricheskih modeley dinamicheskih system. Vestnik Sibirskogo gosudarstvennogo aehrokosmicheskogo universiteta im. akademika M. F. Reshetneva, 47 (1), 36–40.
  20. Sytnik, A. A., Klyuchka, K. N., Protasov, S. Yu. (2013). Primenenie integral'nyh dinamicheskih modeley pri reshenii zadachi identifikacii parametrov ehlektricheskih cepey. Izvestiya Tomskogo politekhnicheskogo universiteta, 322 (4), 103–106.
  21. Annunziato, M., Brunner, H., Messina, E. (2012). Asymptotic stability of solutions to Volterra-renewal integral equations with space maps. Journal of Mathematical Analysis and Applications, 395 (2), 766–775. doi: 10.1016/j.jmaa.2012.05.080

Downloads

Published

2017-10-30

How to Cite

Sytnik, A., Protasov, S., & Klyuchka, K. (2017). Development of the method for creating explicit integral dynamic models of measuring transducers. Eastern-European Journal of Enterprise Technologies, 5(4 (89), 40–48. https://doi.org/10.15587/1729-4061.2017.111444

Issue

Section

Mathematics and Cybernetics - applied aspects