Effect of flame retardant fillers on the fire resistance and physical­mechanical properties of polymeric compositions

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.112003

Keywords:

fire resistance, ethylene­vinyl acetate copolymer, flame retardants, physical­mechanical properties, Oxygen Index

Abstract

An effect of copolymer of ethylene with vinyl acetate of the polymeric matrix and flame retardant fillers on the fire resistance of composite materials was studied. We used of ethylene­vinyl acetate copolymer in the research. The content of vinyl acetate is 18 % and 28 %; melt flow index is 1.8 g/10 min and 2.5 g/10 min, respectively. The flame retardant fillers are aluminum oxide trihydrates with an average diameter of particles of 1.5 µm and 3 µm; magnesium oxide dihydrates – 3.0 µm and 3.7 µm; hydromagnesites – 1.5 µm.

The fire resistance of polymeric compositions was determined using a method of Oxygen Index. It is shown that in order to achieve Oxygen Index larger than 27 %, the degree of filling of the polymeric compositions based on EVA 1 and EVA 2 has to reach
40‒60 % depending on the chemical composition and properties of the fire retardants. At the same time, applying EVA 2 makes it possible to achieve this indicator at smaller values of the filling.

We established regularities in the effect of the nature of a polymeric matrix and flame retardant fillers on the physical­mechanical properties of compositions before and after ageing. An increase in the content of fillers in the polymeric composition results in reduced destructive stress and relative elongation at breaking, while the modulus of elasticity at stretching increases.

The results obtained could be applied when designing the formulations of polymeric compositions, which do not support combustion, for cable products, and which allow control over operational characteristics. 

Author Biography

Olena Chulieieva, PJSC «YUZHCABLE WORKS» Avtohenna str., 7, Kharkiv, Ukraine, 61099

PhD, Chief specialist for Polymeric Materials

Science and Technology Center 

References

  1. Peshkov, I. B. (2013). Materialy kabel'nogo proizvodstva. Moscow: Mashinostroenie, 456.
  2. Tirelli, D. (2013). Antipireny dlya kompozitov. The Chemical Journal, 1-2, 42–45.
  3. Obzor mineral'nyh antipirenov-gidroksidov dlya bezgalogennyh kabel'nyh kompoziciy (2009). Kabel'-news, 8, 41–43.
  4. Bezgalogennye ogneupornye kabeli. Available at: http://www.amtenergo.ru/statji/ognestoikie-kabeli.html
  5. Lujan-Acosta, R., Sánchez-Valdes, S., Ramírez-Vargas, E., Ramos-DeValle, L. F., Espinoza-Martinez, A. B., Rodriguez-Fernandez, O. S. et. al. (2014). Effect of Amino alcohol functionalized polyethylene as compatibilizer for LDPE/EVA/clay/flame-retardant nanocomposites. Materials Chemistry and Physics, 146 (3), 437–445. doi: 10.1016/j.matchemphys.2014.03.050
  6. Sonnier, R., Viretto, A., Dumazert, L., Longerey, M., Buonomo, S., Gallard, B. et. al. (2016). Fire retardant benefits of combining aluminum hydroxide and silica in ethylene-vinyl acetate copolymer (EVA). Polymer Degradation and Stability, 128, 228–236. doi: 10.1016/j.polymdegradstab.2016.03.030
  7. Jeencham, R., Suppakarn, N., Jarukumjorn, K. (2014). Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Composites Part B: Engineering, 56, 249–253. doi: 10.1016/j.compositesb.2013.08.012
  8. Yen, Y.-Y., Wang, H.-T., Guo, W.-J. (2012). Synergistic flame retardant effect of metal hydroxide and nanoclay in EVA composites. Polymer Degradation and Stability, 97 (6), 863–869. doi: 10.1016/j.polymdegradstab.2012.03.043
  9. Feng, C., Liang, M., Chen, W., Huang, J., Liu, H. (2015). Flame retardancy and thermal degradation of intumescent flame retardant EVA composite with efficient charring agent. Journal of Analytical and Applied Pyrolysis, 113, 266–273. doi: 10.1016/j.jaap.2015.01.021
  10. Shevchenko, V. G. (2010). Osnovy fiziki polimernyh kompozicionnyh materialov. Moscow: MGU im. Lomonosova, 98.
  11. Makarova, N. V., Trofimec, V. Ya. (2002). Statistika v Excel. Moscow: Finansy i statistika, 368.
  12. Muhin, N. M., Buryndin, V. G. (2011). Opredelenie reologicheskih i fiziko-mekhanicheskih svoystv polimernyh materialov. Ekarenburg: UGLTU, 33.
  13. Bobovich, B. B. (2009). Nemetallicheskie konstrukcionnye materialy. Moscow: MGIU, 384.

Downloads

Published

2017-10-31

How to Cite

Chulieieva, O. (2017). Effect of flame retardant fillers on the fire resistance and physical­mechanical properties of polymeric compositions. Eastern-European Journal of Enterprise Technologies, 5(12 (89), 65–70. https://doi.org/10.15587/1729-4061.2017.112003

Issue

Section

Materials Science