The influence of the conditions of microplasma processing (microarc oxidation in anode­cathode regime) of aluminum alloys on their phase composition

Authors

  • Valery Belozerov National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-7623-3658
  • Oleg Sоbоl National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-4497-4419
  • Anna Mahatilova National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-7146-7087
  • Valeria Subbotinа National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-3882-0368
  • Taha A. Tabaza Al-Zaytoonah University Queen Alia Airport str., 594, Amman, Jordan, 11733, Jordan
  • Ubeidulla F. Al-Qawabeha Tafila Technical University P O Box, 179, Tafila, Jordan, 66110, Jordan
  • Safwan Moh`d Al-Qawabah Al-Zaytoonah University Queen Alia Airport str., 594, Amman, Jordan, 11733, Jordan

DOI:

https://doi.org/10.15587/1729-4061.2017.112065

Keywords:

structural engineering, microplasma treatment, anode­cathode regime, phase composition

Abstract

Investigations have been performed on the effect of microplasma oxidation regimes in electrolytes with activating additives on the phase­structural state of coatings formed on the basis of aluminum. In microarc oxidation (MAO), the surface layer of the processed aluminum­based alloy was converted to a coating consisting of aluminum oxides with increased hardness. Such a modification of the surface layers makes it possible to use the properties of base materials and modified layers most rationally, sparing expensive and rare metals and alloys.

The study has revealed the formation of intermediate phases (multistage) during the formation of coatings on aluminum alloys in the alkali­silicate electrolyte and the anode­cathode mode of microplasma oxidation. The main intermediate phases are γ­Al2O3 and 3Al2O3·2SiO2.

The composition of the electrolyte has a significant effect on the initial stages of the process during which strong passivating layers are formed on the metallic surface. These layers determine the possibility of spark explosions of sufficient intensity and, thus, the implementation of the MAO process. The obtained results indicate that during the oxidation process, the γ­Al2O3 phase is alloyed with the base components and the electrolyte components to form solid substitutional solutions. The change in the lattice period in this case will be determined, on the one hand, by the difference in the ionic radii of atoms in the lattice and, on the other hand, by the difference in valence.

The paper discloses the influence of the crystal­chemical characteristics of the cations of the processed alloy and the cations that make up the electrolyte on the γ­Al2O3α­Al2O3. The absence of the hardest phase of α­Al2O3 (corundum) in the coating is explained by the low power of microdischarges, at which the temperature of the polymorphic γα transformation is not ensured. Pilot­industrial tests were performed on friction pair parts, and recommendations have been given on the change in the composition of the electrolyte and the parameters of electrolysis that ensure an increase in the content of the α­Al2O3 phase in the coating composition.

Author Biographies

Valery Belozerov, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Professor

Department of Materials Science

Oleg Sоbоl, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Physics and Mathematics Sciences, Professor

Department of Materials Science

Anna Mahatilova, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Researcher

Department of Materials Science

Valeria Subbotinа, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Materials Science

Taha A. Tabaza, Al-Zaytoonah University Queen Alia Airport str., 594, Amman, Jordan, 11733

PhD, Associate Professor

Department of Mechanical Engineering

 

Ubeidulla F. Al-Qawabeha, Tafila Technical University P O Box, 179, Tafila, Jordan, 66110

PhD, Associate Professor

Department of Mechanical Engineering

Safwan Moh`d Al-Qawabah, Al-Zaytoonah University Queen Alia Airport str., 594, Amman, Jordan, 11733

PhD, Associate Professor

Department of Mechanical Engineering

References

  1. Belozerov, V., Mahatilova, A., Sobol', O., Subbotina, V., Subbotin, A. (2017). Investigation of the influence of technological conditions of microarc oxidation of magnesium alloys on their structural state and mechanical properties. Eastern-European Journal of Enterprise Technologies, 2 (5 (86)), 39–43. doi: 10.15587/1729-4061.2017.96721
  2. Barmin, A. E., Zubkov, A. I., Il'inskii, A. I. (2012). Structural features of the vacuum condensates of iron alloyed with tungsten. Functional Materials, 19 (2), 256–259.
  3. Shim, D.-S., Baek, G.-Y., Lee, S.-B., Yu, J.-H., Choi, Y.-S., Park, S.-H. (2017). Influence of heat treatment on wear behavior and impact toughness of AISI M4 coated by laser melting deposition. Surface and Coatings Technology, 328, 219–230. doi: 10.1016/j.surfcoat.2017.08.059
  4. Sapegina, I. V., Dorofeev, G. A., Mokrushina, M. I., Pushkarev, B. E., Lad’yanov, V. I. (2017). High-nitrogen 23Cr9Мn1N steel manufactured by aluminothermy under nitrogen pressure: structure and mechanical properties. Letters on Materials, 7 (2), 137–140. doi: 10.22226/2410-3535-2017-2-137-140
  5. Barmin, A. E., Sobol’, O. V., Zubkov, A. I., Mal’tseva, L. A. (2015). Modifying effect of tungsten on vacuum condensates of iron. The Physics of Metals and Metallography, 116 (7), 706–710. doi: 10.1134/s0031918x15070017
  6. Ivashchenko, V. I., Dub, S. N., Scrynskii, P. L., Pogrebnjak, A. D., Sobol’, O. V., Tolmacheva, G. N. et. al. (2016). Nb–Al–N thin films: Structural transition from nanocrystalline solid solution nc-(Nb,Al)N into nanocomposite nc-(Nb, Al)N/a–AlN. Journal of Superhard Materials, 38 (2), 103–113. doi: 10.3103/s1063457616020040
  7. Grigoriev, S. N., Sobol, O. V., Beresnev, V. M., Serdyuk, I. V., Pogrebnyak, A. D., Kolesnikov, D. A., Nemchenko, U. S. (2014). Tribological characteristics of (TiZrHfVNbTa)N coatings applied using the vacuum arc deposition method. Journal of Friction and Wear, 35 (5), 359–364. doi: 10.3103/s1068366614050067
  8. Bourebia, M., Laouar, L., Hamadache, H., Dominiak, S. (2016). Improvement of surface finish by ball burnishing: approach by fractal dimension. Surface Engineering, 33 (4), 255–262. doi: 10.1080/02670844.2016.1232778
  9. Sobol’, O. V. (2016). The influence of nonstoichiometry on elastic characteristics of metastable β-WC1–x phase in ion plasma condensates. Technical Physics Letters, 42 (9), 909–911. doi: 10.1134/s1063785016090108
  10. Sobol’, O. V. (2011). Control of the structure and stress state of thin films and coatings in the process of their preparation by ion-plasma methods. Physics of the Solid State, 53 (7), 1464–1473. doi: 10.1134/s1063783411070274
  11. Sobol’, O. V., Andreev, A. A., Grigoriev, S. N., Volosova, M. A., Gorban’, V. F. (2012). Vacuum-arc multilayer nanostructured TiN/Ti coatings: structure, stress state, properties. Metal Science and Heat Treatment, 54 (1-2), 28–33. doi: 10.1007/s11041-012-9451-1
  12. Sobol’, O. V. (2016). Structural Engineering Vacuum-plasma Coatings Interstitial Phases. Journal of Nano- and Electronic Physics, 8 (2), 02024–1–02024–7. doi: 10.21272/jnep.8(2).02024
  13. Pogrebnjak, A. D., Bondar, O. V., Abadias, G., Ivashchenko, V., Sobol, O. V., Jurga, S., Coy, E. (2016). Structural and mechanical properties of NbN and Nb-Si-N films: Experiment and molecular dynamics simulations. Ceramics International, 42 (10), 11743–11756. doi: 10.1016/j.ceramint.2016.04.095
  14. Chen, C.-M., Chu, H.-J., He, J.-L. (2017). Anodic dyeing of micro-arc oxidized aluminum with a cathodic pretreatment. Surface and Coatings Technology, 324, 92–98. doi: 10.1016/j.surfcoat.2017.05.062
  15. Krivonosova, E. A., Ponomarev, I. S. (2016). Features of Aluminum Alloy Microplasma Oxidation During Operation in a Polar Pulsating Current Regime. Metallurgist, 60 (5-6), 641–645. doi: 10.1007/s11015-016-0344-1
  16. Banakh, O., Journot, T., Gay, P.-A., Matthey, J., Csefalvay, C., Kalinichenko, O. et. al. (2016). Synthesis by anodic-spark deposition of Ca- and P-containing films on pure titanium and their biological response. Applied Surface Science, 378, 207–215. doi: 10.1016/j.apsusc.2016.03.161
  17. Yerokhin, A. L., Nie, X., Leyland, A., Matthews, A., Dowey, S. J. (1999). Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122 (2-3), 73–93. doi: 10.1016/s0257-8972(99)00441-7
  18. Asadi, S., Kazeminezhad, M. (2016). Multi Directional Forging of 2024 Al Alloy After Different Heat Treatments: Microstructural and Mechanical Behavior. Transactions of the Indian Institute of Metals, 70 (7), 1707–1719. doi: 10.1007/s12666-016-0967-8
  19. Martin, J., Melhem, A., Shchedrina, I., Duchanoy, T., Nominé, A., Henrion, G. et. al. (2013). Effects of electrical parameters on plasma electrolytic oxidation of aluminium. Surface and Coatings Technology, 221, 70–76. doi: 10.1016/j.surfcoat.2013.01.029
  20. Lv, G., Gu, W., Chen, H., Feng, W., Khosa, M. L., Li, L. et. al. (2006). Characteristic of ceramic coatings on aluminum by plasma electrolytic oxidation in silicate and phosphate electrolyte. Applied Surface Science, 253 (5), 2947–2952. doi: 10.1016/j.apsusc.2006.06.036
  21. Veys-Renaux, D., Chahboun, N., Rocca, E. (2016). Anodizing of multiphase aluminium alloys in sulfuric acid: in-situ electrochemical behaviour and oxide properties. Electrochimica Acta, 211, 1056–1065. doi: 10.1016/j.electacta.2016.06.131
  22. Wang, P., Wu, T., Xiao, Y. T., Zhang, L., Pu, J., Cao, W. J., Zhong, X. M. (2017). Characterization of micro-arc oxidation coatings on aluminum drillpipes at different current density. Vacuum, 142, 21–28. doi: 10.1016/j.vacuum.2017.04.038
  23. Shen, Y., Sahoo, P. K., Pan, Y. (2017). A Study of Micro-Arc Oxidation Coatings on Aluminum Alloy Drill Pipe for Offshore Platform. Marine Technology Society Journal, 51 (3), 16–22. doi: 10.1115/omae2016-54685
  24. Tran, Q.-P., Kuo, Y.-C., Sun, J.-K., He, J.-L., Chin, T.-S. (2016). High quality oxide-layers on Al-alloy by micro-arc oxidation using hybrid voltages. Surface and Coatings Technology, 303, 61–67. doi: 10.1016/j.surfcoat.2016.03.049
  25. Ayday, A. (2017). Effect of Two-Step Oxidation on Performance of Micro-Arc Oxidation on 6063 Aluminum Alloy. Acta Physica Polonica A, 131 (1), 96–98. doi: 10.12693/aphyspola.131.96
  26. Tran, Q.-P., Sun, J.-K., Kuo, Y.-C., Tseng, C.-Y., He, J.-L., Chin, T.-S. (2017). Anomalous layer-thickening during micro-arc oxidation of 6061 Al alloy. Journal of Alloys and Compounds, 697, 326–332. doi: 10.1016/j.jallcom.2016.11.372
  27. Pawlik, A., Hnida, K., Socha, R. P., Wiercigroch, E., Małek, K., Sulka, G. D. (2017). Effects of anodizing conditions and annealing temperature on the morphology and crystalline structure of anodic oxide layers grown on iron. Applied Surface Science, 426, 1084–1093. doi: 10.1016/j.apsusc.2017.07.156
  28. Lv, P. X., Chi, G. X., Wei, D. B., Di, S. C. (2011). Design of Scanning Micro-Arc Oxidation Forming Ceramic Coatings on 2024 Aluminium Alloy. Advanced Materials Research, 189-193, 1296–1300. doi: 10.4028/www.scientific.net/amr.189-193.1296
  29. Choi, J. W., Heo, S. J., Koak, J. Y., Kim, S. K., Lim, Y. J., Kim, S. H., Lee, J. B. (2006). Biological responses of anodized titanium implants under different current voltages. Journal of Oral Rehabilitation, 33 (12), 889–897. doi: 10.1111/j.1365-2842.2006.01669.x
  30. Klopotov, A. A., Abzaev, Yu. A., Potekaev, A. I., Volokitin, O. G. (2012). Osnovy rentgenostrukturnogo analiza v materialovedenii. Tomsk: Izd-vo Tom. gos. arhit.-stroit. Un-ta, 276.
  31. Sabaghi Joni, M., Fattah-alhosseini, A. (2016). Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy. Journal of Alloys and Compounds, 661, 237–244. doi: 10.1016/j.jallcom.2015.11.169

Downloads

Published

2017-10-31

How to Cite

Belozerov, V., Sоbоl O., Mahatilova, A., Subbotinа V., Tabaza, T. A., Al-Qawabeha, U. F., & Al-Qawabah, S. M. (2017). The influence of the conditions of microplasma processing (microarc oxidation in anode­cathode regime) of aluminum alloys on their phase composition. Eastern-European Journal of Enterprise Technologies, 5(12 (89), 52–57. https://doi.org/10.15587/1729-4061.2017.112065

Issue

Section

Materials Science