Obtaining biogas during fermentation of fat-containing wastes of leather production

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.114216

Keywords:

recycling of fat-containing wastes, biogas, anaerobic fermentation, recycling of wastes of leather production

Abstract

The possibility of biogas formation from wastes of fat-containing raw material, formed at different stages of the process of leather production was determined.

The influence of impurities, which are used in the production process, on the yield of biogas and content of methane in it was shown. Fatty wastes that contain a significant amount of salts, SAS, and antiseptics, have twice as low rate of biogas formation. Existence of soda contributes to the process of methane genesis due to stabilization of pH value. The yield of methane and biogas from pure fat of pigs was lower than that while using wastes, containing impurities of salts.

The rational parameters of fat-containing raw material for obtaining maximum yield of biogas and methane in it were determined. It was shown that the concentration of the substrate from wastes of treated skins pigs should not exceed 7.5 % or 13 g/dm3.

Obtained laboratory results make it possible to develop the technology of anaerobic fermentation of fat-containing wastes of leather production, containing inorganic and organic impurities. The technology will enable us to solve environmental problems of waste disposal and to obtain the power carrier and a fertilizer. 

Author Biographies

Nataliia Golub, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy, ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of environmental biotechnology and bioenergetics 

Malvina Shynkarchuk, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy, ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

Department of environmental biotechnology and bioenergetics

Alexandr Kozlovec, LLC "Engineering Group Ltd" Solomianska str., 3, Kyiv, Ukraine, 03110

Chief technologist

References

  1. Horbachov, A. A., Kerner, S. M., Andrieieva, O. A., Orlova, A. A. (2007). Osnovy stvorennia suchasnykh tekhnolohiy vyrobnytstva shkiry ta khutra. Kyiv: KNUTD, 190.
  2. Enerhospozhyvannia na osnovi vidnovliuvalnykh dzherel za 2007–2015 roky. Derzhavna sluzhba statystyky Ukrainy. Available at: http://www.ukrstat.gov.ua/operativ/operativ2016/sg/ekolog/ukr/esp_vg_u.htm
  3. Sumarnyi obsiah importu ta eksportu u rozrizi tovarnykh pozytsiy za kodamy UKTZED. Derzhavna fiskalna sluzhba Ukrainy. Available at: http://sfs.gov.ua/ms/f11
  4. Golovteeva, A. A., Martynov, I. K. (1987). Osnovnye napravleniya ispol'zovaniya othodov kozhevennogo proizvodstva. Kozhevennaya promyshlennost', 2, 49.
  5. Famielec, S., Wieczorek-Ciurowa, K. (2011). Waste from leather industry. Threats to the environment. Czasopismo Techniczne. Chemia, 108, 43–48.
  6. World statistical compendium for raw hides and skins, leather and leather footwear 1999–2015 (2015). Food and Agriculture Organization of the United Nations. Rome, 133. Available at: http://www.fao.org/3/a-i5599e.pdf
  7. Sarkar, K. T. (2012). Theory of practice of leather manufacturе. Vol. 8. C.L.S. press, 784.
  8. Cuetos, M. J., Gómez, X., Otero, M., Morán, A. (2008). Anaerobic digestion of solid slaughterhouse waste (SHW) at laboratory scale: Influence of co-digestion with the organic fraction of municipal solid waste (OFMSW). Biochemical Engineering Journal, 40 (1), 99–106. doi: 10.1016/j.bej.2007.11.019
  9. Cuetos, M. J., Gómez, X., Otero, M., Morán, A. (2010). Anaerobic digestion and co-digestion of slaughterhouse waste (SHW): Influence of heat and pressure pre-treatment in biogas yield. Waste Management, 30 (10), 1780–1789. doi: 10.1016/j.wasman.2010.01.034
  10. Central Leather Research Institute. Available at: http://www.clri.org/BPD/Annual%20Report%202009_10.pdf
  11. Energy Recovery from Wastes – Policy & Regulatory Frameworks and Successful Examples in India. Available at: http://www.saarcenergy.org/wp-content/uploads/2016/07/energy%20recovery%20from%20waste.pdf
  12. Bunchak, O. M., Melnyk, I. P., Kolisnyk, N. M., Hnydiuk, V. S. (2013). Pat. No. 85187 UA. Sposib otrymannia orhanichnykh dobryv novoho pokolinnia iz zbalansovanym vmistom tryvalentnoho khromu. No. u 201306563; declareted: 27.05.2013; published: 11.11.2013, Bul. No. 21, 4.
  13. Shanmugam, P., Horan, N. J. (2009). Optimising the biogas production from leather fleshing waste by co-digestion with MSW. Bioresource Technology, 100 (18), 4117–4120. doi: 10.1016/j.biortech.2009.03.052
  14. Anaerobic Digestion of Tannery Wastes. Available at: https://www.bioenergyconsult.com/tag/biogas-from-tannery-wastes
  15. Pessuto, J., Godinho, M., Dettmer, A. (2015). Biogas production from tannery wastes – Evaluation of isolated microorganisms effect. XXXIII IULTCS Congress, 1–10.
  16. Li, X., Abu-Reesh, I., He, Z. (2015). Development of Bioelectrochemical Systems to Promote Sustainable Agriculture. Agriculture, 5 (3), 367–388. doi: 10.3390/agriculture5030367
  17. Corno, L., Pilu, R., Tambone, F., Scaglia, B., Adani, F. (2015). New energy crop giant cane (Arundo donax L.) can substitute traditional energy crops increasing biogas yield and reducing costs. Bioresource Technology, 191, 197–204. doi: 10.1016/j.biortech.2015.05.015
  18. Holub, N. B., Kozlovets, O. A. (2014). Matematychne modeliuvannia produkuvannia metanu v protsesi fermentatsiy. Naukovi visti NTUU «KPI», 3 (95), 21–25.
  19. Leybnits, E., Shtruppe, H. G. (1988). Rukovodstvo po gazovoy hromatografii. Vol. 1. Moscow: Mir, 480.

Downloads

Published

2017-11-07

How to Cite

Golub, N., Shynkarchuk, M., & Kozlovec, A. (2017). Obtaining biogas during fermentation of fat-containing wastes of leather production. Eastern-European Journal of Enterprise Technologies, 6(10 (90), 4–10. https://doi.org/10.15587/1729-4061.2017.114216