Study of energy efficiency of the processes of mechanical destruction of worn automobile tires

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.116085

Keywords:

cutting tires, cutting tool, cutting forces, mathematical model, energy efficiency, optimization

Abstract

We studied the process of cutting the worn pneumatic Bridgestone tire the size of 7.1/11.0-5 using the cutting tool made of alloys of grades R6M5 and T15K6, resulting in the obtained data array on the reduced cutting forces. Regression coefficients were calculated, which formed the basis of a mathematical model in the form of a second-order polynomial. The constructed mathematical model expresses cutting forces dependence on the totality of geometrical parameters and hardness of the cutting tool’s material and operational parameters of the cutting process. Using it can help determine the combination of optimal geometrical parameters, material of the cutting tool and operational parameters in order to ensure the minimization of cutting forces and energy consumption for the cutting process as a whole.

The mathematical model was refined based on the obtained equation of cutting force dependences on tensile strength of the materials of automobile tires. The adequacy of the refined model was confirmed by estimating homogeneity of variances of the estimated and experimental values of cutting forces by using a statistical Fischer criterion. We determined effective operational parameters: spindle rotation frequency and cutting tool feed; geometrical parameters and hardness of the cutting tool’s material, which ensure minimal power consumption when cutting worn automobile tires

Author Biographies

Alexander Sasov, Dniprovsk State Technical University Dniprobudivska str., 2, Kamianske, Ukraine, 51918

PhD, Associate Professor

Department of Automobile and Automotive industry

Alexander Korobochka, Dniprovsk State Technical University Dniprobudivska str., 2, Kamianske, Ukraine, 51918

Doctor of Technical Sciences, Professor

Department of Automobile and Automotive industry

Vladimir Averyanov, Dniprovsk State Technical University Dniprobudivska str., 2, Kamianske, Ukraine, 51918

PhD, Associate Professor

Department of Automobile and Automotive industry

Iurii Korzhavin, Dniprovsk State Technical University Dniprobudivska str., 2, Kamianske, Ukraine, 51918

PhD, Associate ProfessorDepartment of Automobile and Automotive industry

References

  1. Analiz rehuliatornoho vplyvu do proektu nakazu Ministerstva ekolohiy ta pryrodnykh resursiv «Pro vstanovlennia Minimalnykh rozmiriv platy za posluhy z orhanizatsiy zbyrannia, zahotivli ta utylizatsiy znoshenykh shyn». Ministerstvo ekolohiy ta pryrodnykh resursiv Ukrainy. Available at: http://old.menr.gov.ua/docs/normbaza/regulatory/analiz-rehuliatornoho-vplyvu/arv_21032013.doc
  2. Smetanin, B. I. (2000). Zakhyst navkolyshnoho seredovyshcha vid vidkhodiv vyrobnytstva y spozhyvannia. Moscow: Kolossia, 232.
  3. Postnikov, V. V., Sharipov, B. U., Shuster, L. Sh. (1988). Protsessy na kontaktnyh poverhnostyah, iznos rezhushchego instrumenta, svoystva obrabotannoy poverhnosti. Sverdlovsk: Izd-vo Ural'skogo universiteta, 224.
  4. Skorniakov, E. S., Korobochka, O. M., Sasov, O. O., Averianov, V. S. (2010). Pat. No. 56698 UA. Sposib pererobky znoshenykh shyn zahalnoho pryznachennia ta velykohabarytnykh avtomobilnykh shyn. No. u 2010 08087; declareted: 29.06.2010; published: 25.01.2011, Bul. No. 2.
  5. Kozar', D. M., Krauin'sh, P. Ya. (2013). Kinematika i dinamika formirovaniya sil rezaniya pri frezerovanii uprugoy obolochki. Nauka i obrazovanie, 7, 287–309.
  6. Muzafarov, R. S., Mkrtchyan, A. F. (2008). Issledovanie vliyaniya ugla zatochki lezviya na usilie rezaniya. Intellektual'nye sistemy v proizvodstve, 2 (12), 85–88.
  7. Sasov, O. O., Korzhavin, Yu. A., Sychov, S. Yu. (2016). Eksperymentalni doslidzhennia vplyvu heometriy rizhuchoho instrumenta z tytan-volframovykh splaviv na syly rizannia pry rozrizanni znoshenykh pnevmatychnykh shyn. Perspektyvni tekhnolohiy ta prylady, 8 (1), 110–115.
  8. Sasov, O. O., Korzhavin, Yu. A., Korobochka, O. M. (2015). Doslidzhennia vplyvu heometriy ta materialu rizhuchoho instrumentu na syly rizannia pry poperednomu podribnenni znoshenykh pnevmatychnykh shyn. Perspektyvni tekhnolohiy ta prylady, 7 (2), 104–107.
  9. Skorniakov, E. S., Sasov, O. O., Korzhavin, Yu. A. et. al. (2015). Doslidzhennia osoblyvostei podribnennia rizanniam pnevmatychnykh shyn pry utylizatsiy. Perspektyvni tekhnolohiy ta prylady, 6 (1), 83–87.
  10. Ragrin, N. A. (2016). Osobennosti planirovaniya eksperimenta v issledovaniyah stoykosti rezhushchih instrumentov. Sovremennye problemy teorii mashin, 4, 12–13.
  11. Grubyiy, S. V. (2008). Optimizatsiya rezhimov odnoinstrumentnoy lezviynoy obrabotki. Nauchno tekhnicheskiy zhurnal STIN, 2, 24–26.
  12. Grubyiy, S. V. (2017). Raschet parametrov struzhkoobrazovaniya i sil rezaniya plastichnyh materialov. Mashiny i Ustanovki: proektirovanie, razrabotka i ekspluatatsiya, 1, 25–37.
  13. Tarovik, A. B., Mihaylov, A. N. (2014). Optimizatsiya rezhimov rezaniya pri obrabotke tonkostennyh tsilindricheskih izdeliy. Prohresyvni tekhnolohiy i systemy mashynobuduvannia, 3 (49)-4 (50), 183–187.
  14. Sienkiewicz, M., Janik, H., Borzędowska-Labuda, K., Kucińska-Lipka, J. (2017). Environmentally friendly polymer-rubber composites obtained from waste tyres: A review. Journal of Cleaner Production, 147, 560–571. doi: 10.1016/j.jclepro.2017.01.121
  15. Norambuena-Contreras, J., Silva-Robles, E., Gonzalez-Torre, I., Saravia-Montero, Y. (2017). Experimental evaluation of mechanical and thermal properties of recycled rubber membranes reinforced with crushed polyethylene particles. Journal of Cleaner Production, 145, 85–97. doi: 10.1016/j.jclepro.2017.01.040
  16. Isayev, A. I. (2013). Recycling of Rubbers. The Science and Technology of Rubber, 697–764. doi: 10.1016/b978-0-12-394584-6.00020-0
  17. Shen, Z., Lu, L., Sun, J., Yang, F., Tang, Y., Xie, Y. (2015). Wear patterns and wear mechanisms of cutting tools used during the manufacturing of chopped carbon fiber. International Journal of Machine Tools and Manufacture, 97, 1–10. doi: 10.1016/j.ijmachtools.2015.06.008
  18. Pagani, M., Perego, U. (2015). Explicit dynamics simulation of blade cutting of thin elastoplastic shells using “directional” cohesive elements in solid-shell finite element models. Computer Methods in Applied Mechanics and Engineering, 285, 515–541. doi: 10.1016/j.cma.2014.11.027
  19. Schuldt, S., Arnold, G., Roschy, J., Schneider, Y., Rohm, H. (2013). Defined abrasion procedures for cutting blades and comparative mechanical and geometrical wear characterization. Wear, 300 (1-2), 38–43. doi: 10.1016/j.wear.2013.01.110
  20. Triki, E. (2016). Combined puncture/cutting of elastomer membranes by pointed blades: An alternative approach of fracture energy. Mechanics of Materials, 97, 19–25. doi: 10.1016/j.mechmat.2016.02.010
  21. Sasov, O. O., Aver'yanov, V. S., Korzhavin, Yu. A., Sokolov, A. D. (2017). Otrymannia matematychnoi modeli formuvannia syl rizannia pry rozrizanni navpil znoshenykh avtomobilnykh shyn. Perspektyvni tekhnolohii ta prylady, 10 (1), 168–175.
  22. Sokolov, A. D., Korobochka, O. M., Sasov, O. O. (2016). Optymizatsiya rezhymnykh parametriv protsesu rizannia znoshenykh pnevmatychnykh shyn, vybir optymalnoho materialu ta heometrychnykh parametriv rizhuchoho instrumentu pry vyznachenykh umovakh. Matematychne modeliuvannia, 2 (35), 53–56.

Downloads

Published

2017-11-23

How to Cite

Sasov, A., Korobochka, A., Averyanov, V., & Korzhavin, I. (2017). Study of energy efficiency of the processes of mechanical destruction of worn automobile tires. Eastern-European Journal of Enterprise Technologies, 6(1 (90), 51–60. https://doi.org/10.15587/1729-4061.2017.116085

Issue

Section

Engineering technological systems