Fractal diagnostics of the degree of fuel atomization by diesel engine injectors

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.116104

Keywords:

fractal diagnostics, degree of fuel atomization, injector, fractal modeling, computer model support

Abstract

The work deals with the research related to finding the relationship between the wear rate of diesel engine injector nozzles and the fractal characteristics of spots of fuel atomized by such injectors.

At present, the processes of diagnosing the degree of fuel atomization by injectors are carried out either using too complicated and expensive methods, or at a basic, visual level with conclusions about the injector efficiency. Based on the analysis of the methods of diagnostics of diesel engine injectors, the method of fractal diagnostics, which does not require the verification of elements either on a working engine, or with the use of complex and expensive devices is proposed.

The research has shown the effectiveness of the proposed quantitative fractal diagnostics to assess the wear rate of diesel engine injector nozzles. The proposed method of fractal diagnostics of the degree of fuel atomization by injectors can be divided into the following stages: getting an image of the spot of fuel atomized by an injector, allocation of the area for the fractal analysis and dimensioning, image segmentation, generation of features and comparison with the reference image.

The experimental research using the method of fractal diagnostics of the degree of fuel atomization by diesel engine injectors is carried out. On the basis of experimental data, the fractal dimension of the spot of fuel atomized by the diagnosed injector allows drawing conclusions about the readiness of injector operation on an engine or about the need for repairing such an injector

Author Biographies

Serhii Pustiulha, Lutsk National Technical University Lvivska str., 75, Lutsk, Ukraine, 43018

Doctor of Technical Sciences, Professor

Department of engineering and computer graphics

Viktor Samostian, Lutsk National Technical University Lvivska str., 75, Lutsk, Ukraine, 43018

PhD, Associate Professor

Department of engineering and computer graphics

Nataliya Tolstushko, Lutsk National Technical University Lvivska str., 75, Lutsk, Ukraine, 43018

PhD, Assistant

Department of engineering

Serhiy Korobka, Lviv National Agrarian University Volodymyra Velykoho str., 1, Dubliany, Ukraine, 80381

PhD, Senior Lecturer

Department of Energy

Mykhailo Babych, Lviv National Agrarian University Volodymyra Velykoho str., 1, Dubliany, Ukraine, 80381

PhD

Department of Energy

References

  1. Turevskiy, I. S. (2011). Tekhnicheskoe obsluzhivanie avtomobiley. Ch. 1. Tekhnicheskoe obsluzhivanie i tekushchiy remont avtomobiley. Moscow: ID «Forum» – INFRA-M, 432.
  2. Krivenko, P. M., Fedosov, I. M. (2006). Remont i tekhnicheskoe obsluzhivanie sistemy pitaniya avtotraktornyh dvigateley. Moscow: Kolos, 288.
  3. Zaharov, Yu. A., Kul'kov, E. A. (2015). Analiz oborudovaniya, primenyaemogo dlya diagnostiki, ispytaniya i proverki forsunok dizel'nyh DVS avtomobiley. Molodoy ucheniy, 2, 154–157.
  4. Maetskiy, A. V., Greben'kov, A. A. (2011). Obzor priborov i metodov issledovaniya kachestva raspylivaniya topliva dizel'noy forsunkoyu. Molodoy ucheniy, 10, 48–54.
  5. Novichkov, A. V., Novikov, E. V., Rylyakin, E. G., Lahno, A. V., Anoshkin, P. I. (2014). Issledovanie iznashivaniya pretsizionnyh detaley dizel'noy toplivnoy apparatury. Mezhdunarodniy nauchniy zhurnal, 3, 108–111.
  6. Zaharov, Yu. A., Rylyakin, E. G. (2014). Proverka, diagnostika i ispytanie forsunok dizeley. Transport. Ekonomika. Sotsial'naya sfera. Aktual'nye problemy i ih resheniya: sbornik statey Mezhdunarodnoy nauchno-prakticheskoy konferentsiy MNITS PGSKHA. Penza: RIO PGSKHA, 43–47.
  7. Filin, I. N. (2013). Ustroystvo dlya proverki forsunok dizeley. Vklad molodyh uchenyh v innovatsionnoe razvitie APK Rossii: sbornik materialov Vserossiyskoy nauchno-prakticheskoy konferentsii. Penza: RIO PGSKHA, 204–206.
  8. Trelin, A. A., Trelina, K. V. (2007). Osnovnye pokazateli tekhnicheskogo sostoyaniya forsunok – davlenie nachala vpryska, kachestvo raspylivaniya topliva, germetichnost' i propusknaya sposobnost'. Trudy GOSNITI, 99, 61–63.
  9. Miao, T., Yu, B., Duan, Y., Fang, Q. (2014). A fractal model for spherical seepage in porous media. International Communications in Heat and Mass Transfer, 58, 71–78. doi: 10.1016/j.icheatmasstransfer.2014.08.023
  10. Gao, Y., Wu, K., Jiang, J. (2016). Examination and modeling of fractality for pore-solid structure in cement paste: Starting from the mercury intrusion porosimetry test. Construction and Building Materials, 124, 237–243. doi: 10.1016/j.conbuildmat.2016.07.107
  11. Zuo, R., Wang, J. (2016). Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration, 164, 33–41. doi: 10.1016/j.gexplo.2015.04.010
  12. Andronache, I. C., Peptenatu, D., Ciobotaru, A.-M., Gruia, A. K., Gropoşilă, N. M. (2016). Using Fractal Analysis in Modeling Trends in the National Economy. Procedia Environmental Sciences, 32, 344–351. doi: 10.1016/j.proenv.2016.03.040
  13. Chen, Q., Xu, F., Liu, P., Fan, H. (2016). Research on fractal model of normal contact stiffness between two spheroidal joint surfaces considering friction factor. Tribology International, 97, 253–264. doi: 10.1016/j.triboint.2016.01.023
  14. Harrar, K., Jennane, R., Zaouchi, K., Janvier, T., Toumi, H., Lespessailles, E. (2018). Oriented fractal analysis for improved bone microarchitecture characterization. Biomedical Signal Processing and Control, 39, 474–485. doi: 10.1016/j.bspc.2017.08.020
  15. Balankin, A. S. (2013). Stresses and strains in a deformable fractal medium and in its fractal continuum model. Physics Letters A, 377 (38), 2535–2541. doi: 10.1016/j.physleta.2013.07.029
  16. Wang, R., Zhuo, Z., Zhou, H. W., Liu, J. F. (2017). A fractal derivative constitutive model for three stages in granite creep. Results in Physics, 7, 2632–2638. doi: 10.1016/j.rinp.2017.07.051
  17. Shen, H., Ye, Q., Meng, G. (2017). Anisotropic fractal model for the effective thermal conductivity of random metal fiber porous media with high porosity. Physics Letters A, 37, 3193–3196. doi: 10.1016/j.physleta.2017.08.003
  18. Li, Z.-Y., Liu, H., Zhao, X.-P., Tao, W.-Q. (2015). A multi-level fractal model for the effective thermal conductivity of silica aerogel. Journal of Non-Crystalline Solids, 430, 43–51. doi: 10.1016/j.jnoncrysol.2015.09.023
  19. Falconer, K. (2003). Fractal Geometry: Mathematical Foundations and Applications. Wiley. doi: 10.1002/0470013850
  20. Mandel'brot, B. (2002). Fraktal'naya geometriya prirody. Moscow: In-t komp'yuternyh issled., 656.
  21. Feder, E. (1991). Fraktaly. Moscow: Mir, 254.
  22. Pustiulha, C. I. (2011). Dyskretne vektorne formuvannia heometrychnykh obiektiv. Prykladna heometriya ta inzhenerna hrafika, 88, 271–278.
  23. Pustiulha, S. I. (2006). Dyskretne vyznachennia heometrychnykh obiektiv chyslovymy poslidovnostiamy. Kyiv, 320.
  24. Pustiulha, C. I., Prydiuk, V. M., Prushko, I. V. (2012). Dyskretne vektorne formuvannia fraktalnykh struktur. Naukovi notatky, 37, 275–279.

Downloads

Published

2017-11-24

How to Cite

Pustiulha, S., Samostian, V., Tolstushko, N., Korobka, S., & Babych, M. (2017). Fractal diagnostics of the degree of fuel atomization by diesel engine injectors. Eastern-European Journal of Enterprise Technologies, 6(8 (90), 40–46. https://doi.org/10.15587/1729-4061.2017.116104

Issue

Section

Energy-saving technologies and equipment