Development of the method for determining optimal parameters of the process of displacement of technological objects

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.116788

Keywords:

optimal trajectory, practical optimization method, two-stage optimization, search optimization

Abstract

The optimization of technological processes is the only tool that can ensure maximization of financial resources of the owner of an enterprise. The most numerous class of managed systems is the systems of displacement.

It is believed that finding an optimum of the displacement process can be implemented using the methods of dynamic programming. However, in this case, the search process is carried out under the assumption that an increase in the displacement velocity has no effect on the magnitude of wear of the technological mechanism of a displacement system. In this case, parameters of the acceleration and the established process of displacement are determined employing different criteria for the quality of control.

In contrast to the conventional approach, within the framework of present study, a two-stage operational displacement process is optimized based on a single criterion of the efficiency of resource use. However, the optimization model of a displacement process is essentially non-linear. Classical methods of searching for a global optimum under such conditions imply unnecessarily long work of technological equipment under non-optimal modes.

The idea of the method is to significantly narrow the region of a two-parametric search optimization using a one-parametric search for local extrema of the sub-processes of acceleration and uniform displacement and to maximally close approach the global optimum at its first step.

The research has shown that the narrowing of the region of a two-parametric search optimization of the process of displacement can be ensured through preliminary four-stage single-parametric search for local extrema for the sub-processes of acceleration and the process of uniform displacement. Within the range of the first and second stages of search for local minima of the sub-processes costs we determine initial conditions in the search for local maxima of the efficiency of displacement sub-processes. The coordinates of the found extrema enable determining a starting point of the search optimization and limit the search region.

The proposed method significantly reduces the dimensions of region of search optimization (by seven times in the considered example) and reduces the number of steps in the search optimization by an order of magnitude.

Therefore, the proposed practical method of searching for the optimal trajectory of control is robust in its essence. 

Author Biographies

Igor Lutsenko, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39600

Doctor of Technical Sciences, Professor

Department of Electronic Devices 

Valerii Tytiuk, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of Electromechanics

Iryna Oksanych, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39600

PhD, Associate Professor

Department of Information and Control Systems

Zhanna Rozhnenko, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of Electromechanics

References

  1. Siromiatnikov, V. S., Ortega, M. G., Podzharov, E., García, J. M., Zamora, L. A. Simulation and Optimization of a Chain Conveyor. Proceedings of the Sixth International Conference on Engineering Computational Technology. doi: 10.4203/ccp.89.123
  2. Pereira, A. I., Lima, J., Costa, P. (2015). Combining gait optimization with passive system to increase the energy efficiency of a humanoid robot walking movement. AIP Conference Proceedings, 1648 (1). doi: 10.1063/1.4912422
  3. Sun, A. P., Chen, H. L., Kong, Q. Y., Wang, F. Y. (2015). Double crane lifting delivery method hoisting technology and optimization. Advanced Control, Automation and Robotics. doi: 10.2495/acar140481
  4. Xu, M., Yang, J., Gao, Z. (2010). Particle Swarm Optimization Algorithm in Transport Continuous Network Design Problems. 2010 Third International Joint Conference on Computational Science and Optimization. doi: 10.1109/cso.2010.53
  5. Vueykova, O. N., Larin, O. N. (2011). Voprosy povysheniya ehffektivnosti raboty kar'ernogo avtotransporta. Vestnik Orenburgskogo gosudarstvennogo universiteta, 10 (129), 20–25.
  6. Li, S., Kawajiri, Y., Raisch, J., Seidel-Morgenstern, A. (2011). Optimization of startup and shutdown operation of simulated moving bed chromatographic processes. Journal of Chromatography A, 1218 (25), 3876–3889. doi: 10.1016/j.chroma.2011.04.051
  7. Zhang, S., Xia, X. (2011). Modeling and energy efficiency optimization of belt conveyors. Applied Energy, 88 (9), 3061–3071. doi: 10.1016/j.apenergy.2011.03.015
  8. Burmistrova, O. N., Korol', S. A. (2013). Opredelenie optimal'nyh skorostey dvizheniya lesovoznyh avtopoezdov iz usloviy minimizacii raskhoda topliva. Lesnoy vestnik, 1, 25–28.
  9. Timofeefa, G., Timofeev, N. (2015). Evaluation of payment flows based on Markov chain model with incomplete information. AIP Conference Proceedings, 1631 (1). doi: 10.1063/1.4902452
  10. Boiko, I. (2013). Improving the Accuracy of Tuning of PID Controllers. Non-Parametric Tuning of PID Controllers, 81–95. doi: 10.1007/978-1-4471-4465-6_4
  11. He, D., Pang, Y., Lodewijks, G. (2017). Green operations of belt conveyors by means of speed control. Applied Energy, 188, 330–341. doi: 10.1016/j.apenergy.2016.12.017
  12. Zavalishchin, D. (2015). Dynamic programming in applied optimization problems. AIP Conference Proceedings, 1690 (1). doi: 10.1063/1.4936687
  13. Nagorniy, V. V. (2017). Avtomatizirovannoe upravlenie rezhimami rezaniya na osnove prognoza individual'nogo resursa rezhushchego instrumenta. Radioehlektronika, avtomatika, upravlenie, 3, 183–191.
  14. Tytyuk, V. K. (2015). Effect of electromechanical equipment wear on startup process indicators. Eastern-European Journal of Enterprise Technologies, 6 (2 (78)), 23–30. doi: 10.15587/1729-4061.2015.55924
  15. Banichuk, N., Kurki, M., Neittaanmäki, P., Saksa, T., Tirronen, M., Tuovinen, T. (2013). Optimization and Analysis of Processes with Moving Materials Subjected to Fatigue Fracture and Instability. Mechanics Based Design of Structures and Machines, 41 (2), 146–167. doi: 10.1080/15397734.2012.708630
  16. Kulakov, G. T., Kulakov, A. T., Korzun, M. L., Basalay, D. V. (2012). Strukturno-parametricheskaya optimizaciya sistem avtomaticheskogo regulirovaniya s differencirovaniem promezhutochnogo signala. Ehnergetika. Izvestiya vysshih uchebnyh zavedeniy i ehnergeticheskih ob'edineniy SNG, 64–71.
  17. Aleksandrovskiy, N. M. (2013). Ehlementy teorii optimal'nyh sistem avtomaticheskogo upravleniya. Tbilisi, 136.
  18. Arnaout, A., Heber, M., Wolf-Zoellner, P., Thonhauser, G. (2017). A new method for rig move optimization – Case study on moving land rigs. Oil Gas European Magazine, 43 (1), 28–30.
  19. Lutsenko, I., Fomovskaya, E. (2015). Synthesis of cybernetic structure of optimal spooler. Metallurgical and Mining Industry, 9, 297–301.
  20. Tytiuk, V. (2016). Analytical determination of the electromechanical system starting process efficiency index with regard to the distributed nature of input products consumption. Eastern-European Journal of Enterprise Technologies, 6 (2 (84)), 51–59. doi: 10.15587/1729-4061.2016.83203
  21. Lutsenko, I. (2016). Definition of efficiency indicator and study of its main function as an optimization criterion. Eastern-European Journal of Enterprise Technologies, 6 (2 (84)), 24–32. doi: 10.15587/1729-4061.2016.85453
  22. Lutsenko, I., Fomovskaya, E., Oksanych, I., Koval, S., Serdiuk, O. (2017). Development of a verification method of estimated indicators for their use as an optimization criterion. Eastern-European Journal of Enterprise Technologies, 2 (4 (86)), 17–23. doi: 10.15587/1729-4061.2017.95914
  23. Lutsenko, I., Fomovskaya, O., Konokh, I., Oksanych, I. (2017). Development of a method for the accelerated two-stage search for an optimal control trajectory in periodical processes. Eastern-European Journal of Enterprise Technologies, 3 (2 (87)), 47–55. doi: 10.15587/1729-4061.2017.103731

Downloads

Published

2017-11-29

How to Cite

Lutsenko, I., Tytiuk, V., Oksanych, I., & Rozhnenko, Z. (2017). Development of the method for determining optimal parameters of the process of displacement of technological objects. Eastern-European Journal of Enterprise Technologies, 6(3 (90), 41–48. https://doi.org/10.15587/1729-4061.2017.116788

Issue

Section

Control processes