Determination model of rational variant of local operation of control station

Authors

  • Олександр Валерійович Лаврухін Ukrainian State Academy of Railway Transport Sq. Feuerbach, 7, Kharkov, Ukraine, 61050, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.11719

Keywords:

Local operation, control station, operating conditions, artificial intelligence, objective function

Abstract

The operation of railway stations is based on rational organization of local railway stations. The study is devoted to the improvement of local management of rail transportation by developing a technology of rational distribution of an engine yard in operational conditions with elements of artificial intelligence and its further implementation at automated workplace.

The solution of the problem should be based on the development of a mathematical model of station service, included to the plan of formation of freight trains. According to this, we proposed an objective function of the mathematical model of the plan of local operation at a control station in the form of an integral indicator.

The formed mathematical model is the basis for the automated technology of determination of rational variant of operation of locomotives that serve local rail stations provided the minimization of wagon-hours downtime at intermediate and freight stations.

The proposed model is characterized by a fundamentally new approach to solution of optimization problems not only in the sphere of railway transport but also in other sectors of the industrial complex of Ukraine

Author Biography

Олександр Валерійович Лаврухін, Ukrainian State Academy of Railway Transport Sq. Feuerbach, 7, Kharkov, Ukraine, 61050

Doctor of Science in Technology

Management of operational work

References

  1. Інструкція з обліку і аналізу виконання графіка руху пасажирських, приміських та вантажних поїздів. ЦЧУ - ЦД/ 0002. К., 2010. – 44 с.
  2. Шапкин И.Н. Организация перевозок на основе дискретных методов управления и твердого графика движения поездов [Текст] / И.Н. Шапкин, Д.Б. Неклюдов, Е.М. Кожанов // Железные дороги мира. – 2005. – Вип. 3 С.28-33.
  3. Підходи щодо створення автоматизованої системи управління місцевою роботою з елементами штучного інтелекту [Текст] : тез. доповідей 5-й міжнародній наук.-практ. конф. (квіт. 2009) / гол. ред. М.І. Данько – Х.: УкрДАЗТ, 2009. – 58 с.
  4. Виноградов, И.М. Математическая энциклопедия. Том 2. [Текст] / Виноградов, И.М.– М.: Советская энциклопедия, 1977. – 1140 с.
  5. Емельянов, В.В. Теория и практика эволюционного моделирования [Текст] / В.В. Емельянов, В.В. Курейчик, В.М. Курейчик. – М.: Физматлит, 2003. – С. 432.
  6. Курейчик, В.М. Поисковая адаптация: теория и практика [Текст] / В.М. Курейчик, Б.К. Лебедев, О.К. Лебедев – М.: Физматлит, 2006. – С. 272.
  7. Гладков, Л.А. Курейчик В.В., Курейчик В.М. Генетические алгоритмы: [Текст] учеб, пособие / Л.А. Гладков, В.В. Курейчик, В.М. Курейчик – М.: Физматлит, 2006. – С. 320.
  8. Рутковская, Д. Нейронные сети, генетические алгоритмы и нечеткие системы [Текст] / Д. Рутковская, М. Пилиньский, Л. Рутковский – М.: Горячая линия - Телеком, 2008. – С. 452.
  9. Bardcev S., Okhonin V. (1989) The algorithm of dual functioning (back-propagation): general approach, vesions and applications. Krasnojarsk: Inst. of biophysics SB AS USSA, 150/
  10. Cendrowska J. (1987) PRISM: An algorithm for inducing modular rules International Journal of Man-Machine Studies, 27, 349-370.
  11. Instructions for recording and analysis of the implementation timetable of passenger, commuter and freight trains (2001). TSCHU - CD / 0002, 44.
  12. Shapkina, I. N., Neklyudov, D. B., Kozhanov E. M. (2005) Organization of transport on the basis of methods discrete management and a solid schedule of trains,3, 28-33.
  13. Danko M. I. (2009) Approaches for creating automated management system of local work with elements of artificial intelligence [text]: abstracts. reports 5-th International scientific-practical. conf. - H.: UkrDAZT, 58.
  14. Vinogradov, I. M. (1977) Mathematical Encyclopaedia. Volume 2. - Moscow: Soviet Encyclopedia, 1140.
  15. Emelyanov, V.V., Kureychyk, V.V., Kureychyk, V.M. (2003) Theory and practice of evolutionary modeling. - Moscow: Fizmatlit, 432.
  16. Kureychyk, V.M., Lebedev B.K., Lebedev D.C. (2006) Search engine adaptation: Theory and Practice. - Moscow: Fizmatlit, 272.
  17. Gladkov, L.A. Kureychyk, V.V., Kureychyk, V.M. (2006) Henetycheskye algorithms. Textbook, manual - Moscow: Fizmatlit, 320.
  18. Rutkovskaya, D. Pylynskyy, M., Rutkovskyy, L. (2008) Neural networks, algorithms and genetic algorithms and fuzzy systems. - Moscow: Hotline - Telecom, 452.
  19. Bardcev S., Okhonin V. (1989) The algorithm of dual functioning (back-propagation): general approach, vesions and applications. Krasnojarsk: Inst. of biophysics SB AS USSA, 150/
  20. Cendrowska J. (1987) PRISM: An algorithm for inducing modular rules International Journal of Man-Machine Studies, 27, 349-370.

Published

2013-04-25

How to Cite

Лаврухін, О. В. (2013). Determination model of rational variant of local operation of control station. Eastern-European Journal of Enterprise Technologies, 2(3(62), 62–64. https://doi.org/10.15587/1729-4061.2013.11719

Issue

Section

Control systems