High-energy ultrasound to improve the quality of purifying the particles of iron ore in the process of its enrichment

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.118448

Keywords:

ultrasonic influence, mineral purification, iron ore, cavitation mode, technogenic splices

Abstract

The iron-magnetite raw material extracted in Ukraine is characterized by a complex texture, structure, and a high content of harmful impurities such as silicon dioxide, potassium oxides, sodium, magnesium, and sulfur. At the same time, the requirements for the quality of iron ore concentrates entering the further metallurgical processing are increasing, as the high quality of magnetite concentrates can significantly reduce the cost of metallurgical production.

Meanwhile, the quality of concentrates decreases mainly due to the formation of technogenic micron splices in the iron ore pulp. The main reason for the formation of gaps is the presence of ion-electric and molecular fields on the surface of the ore particles. The formation of technogenic gaps reduces the difference in the properties of the surface of the ore and nonmetallic grains; it changes their magnetic susceptibility and, consequently, the efficiency of separation methods.

Analysis of the results of studying the influence of the dynamic effects of high-energy ultrasound on the ore pulp showed the promising use of this approach.

To improve the efficiency of cleaning the surfaces of minerals, it is proposed to pre-treat the iron ore slurry with the help of high-energy ultrasound. The optimum values of the intensity and the duration of ultrasonic treatment in the purification of mineral particles have been determined. When cleaning mineral particles, the intensity should be 1.2 W/cm2, and the processing time should not exceed 60 seconds. In this case, the yield of the purified product is increased by 0.8 %, and its quality grows by 0.9 %. It has been proven that the efficiency of ultrasonic treatment is associated with the renewal of particles surfaces, which leads to an increase in the contrast of magnetic and flotation properties of minerals.

The study has shown that ultrasonic treatment of the iron ore pulp in the Kremenchuk iron ore region of Ukraine allows reducing the content of harmful impurities: potassium oxide – from 0.19 to 0.035–0.04 %; sodium oxide – from 0.14 to 0.027 %.

Author Biographies

Vladimir Morkun, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Doctor of Technical Sciences, Professor, Vice-Rector for Research

Georgii Gubin, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Doctor of Technical Sciences, Professor, Head of Department

Department of metallurgy of ferrous metals and foundry production

Tetyana Oliinyk, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Doctor of Technical Sciences, Professor, Head of Department

Department of mineral processing and chemistry

Viktor Lotous, PrJSC Poltavskii GOK Budivelnykiv str., 16, Horishni Plavni, Ukraine, 39800

Chairman of the Board

Vita Ravinskaia, PrJSC Poltavskii GOK Budivelnykiv str., 16, Horishni Plavni, Ukraine, 39800

Head of test center

Vitaliy Tron, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of automation, computer science and technology

Natalia Morkun, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Doctor of Technical Sciences, Associate Professor, Head of Department

Department of automation, computer science and technology

Maxym Oliinyk, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Senior Lecturer

Department of mineral processing and chemistry

References

  1. Matyuha, V. V., Movchan, N. T. (2011). Sovremennoe sostoyanie mineral'no-syr'evoy bazy chernoy metallurgii Ukrainy. Gorniy zhurnal, 4, 65–67.
  2. Bol'shakov, V. I., Vasilenko, S. P., Galetskiy, L. S. et. al.; Gnatush, V. A. (Ed.) (2009). Gorno-metallurgicheskiy kompleks Ukrainy (tsifry, fakty, kommentarii). Biznes-spravochnik. Kyiv, 732. Available at: http://cgntb.dp.ua/pn_book.html
  3. Sentemova, V. A. (2007). Flotatsiya v skhemah obogashcheniya magnetitovyh rud. Obogashchenie rud, 2, 18–22.
  4. Oliinyk, T. A., Chasova, E. V., Skliar, L. V., Kushniruk, N. V., Oliinyk, M. O., Skliar, A. Yu. (2016). Rozrobka tekhnolohiy ochyshchennia zalizovmisnykh kontsentrativ vid shkidlyvykh domishok. Zbahachennia korysnykh kopalyn, 62 (103), 34–44.
  5. Goncharov, S. A. (2009). Povyshenie effektivnosti obogatitel'nyh tekhnologiy putem vozdeystviya vysokoenergeticheskogo ul'trazvuka na pererabatyvaemoe syr'e. Visnyk Kryvorizkoho tekhnichnoho universytetu, 23, 236–239.
  6. Gzogyan, T. N. (2010). Teoreticheskie i eksperimental'nye issledovaniya polucheniya vysokokachestvennyh kontsentratov. Gorniy informatsionno-analiticheskiy byulleten', 4, 389–393.
  7. Podgorodetskiy, N. S. (2007). Avtomaticheskoe upravlenie protsessom raskrytiya poleznogo komponenta pri izmel'chenii rudy. Visnyk Kryvorizkoho tekhnichnoho universytetu, 19, 120–124.
  8. Pelevin, A. E., Lazebnaya, M. V. (2009). Primenenie grohotov «Derrik» v zamknutom tsikle izmel'cheniya na obogatitel'noy fabrike OAO «Kombinat KMAruda». Obogashchenie rud, 2, 4–8.
  9. Shiryaev, A. A., Neskoromniy, E. N., Mironenko, A. I., Samohina, S. A., Staryh, S. S. (2013). Primenenie tonkogo grohocheniya dlya povysheniya kachestva na obogatitel'noy fabrike gorno-obogatitel'nogo kompleksa «ArselorMitall Krivoy Rog». Visnyk KNU, 34, 114–120.
  10. Oliinyk, T. A., Oliinyk, M. O., Skliar, L. V., Skliar, A. Yu. (2017). Osoblyvosti zbahachennia zaliznykh rud. Zbahachennia korysnykh kopalyn, 67 (108), 88–101.
  11. Gubin, G. G., Yarosh, T. P., Sklyar, L. V. (2016). Obobshchenie i analiz vozmozhnosti ispol'zovaniya ul'trazvukovyh kolebaniy pri pererabotke poleznyh iskopaemyh. Zbahachennia korysnykh kopalyn, 62 (103), 132–143.
  12. Cao, Q., Cheng, J., Feng, Q., Wen, S., Luo, B. (2017). Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite. Powder Technology, 311, 390–397. doi: 10.1016/j.powtec.2017.01.069
  13. Saikia, B. K., Dutta, A. M., Saikia, L., Ahmed, S., Baruah, B. P. (2014). Ultrasonic assisted cleaning of high sulphur Indian coals in water and mixed alkali. Fuel Processing Technology, 123, 107–113. doi: 10.1016/j.fuproc.2014.01.037
  14. Yusof, N. S. M., Babgi, B., Alghamdi, Y., Aksu, M., Madhavan, J., Ashokkumar, M. (2016). Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrasonics Sonochemistry, 29, 568–576. doi: 10.1016/j.ultsonch.2015.06.013
  15. Ambedkar, B., Nagarajan, R., Jayanti, S. (2011). Ultrasonic coal-wash for de-sulfurization. Ultrasonics Sonochemistry, 18 (3), 718–726. doi: 10.1016/j.ultsonch.2010.09.006
  16. Morkun, V., Tron, V., Ravinskaia, V. (2017). Optimization of high-energy ultrasound source parameters for cavitation disintegration of ore floccules before floatation. IEEE International Young Scientists Forum on Applied Physics and Engineering, 96–99.
  17. Tabei, M., Mast, T. D., Waag, R. C. (2002). Ak-space method for coupled first-order acoustic propagation equations. The Journal of the Acoustical Society of America, 111 (1), 53–63. doi: 10.1121/1.1421344
  18. Pierce, D. (1989). Acoustics: an introduction to its physical principles and applications. NY: Acoustical Society of America, 678.
  19. Mast, T. D., Souriau, L. P., Liu, D.-L. D., Tabei, M., Nachman, A. I., Waag, R. C. (2001). A k-space method for large-scale models of wave propagation in tissue. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 48 (2), 341–354. doi: 10.1109/58.911717
  20. Fornberg, B. (1996). A practical guide to pseudospectral methods. Cambridge: Cambridge University Press, 231. doi: 10.1017/cbo9780511626357
  21. Wojcik, G., Fomberg, B., Waag, R., Carcione, L., Mould, J., Nikodym, L., Driscoll, T. (1997). Pseudospectral methods for large-scale bioacoustic models. 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118). doi: 10.1109/ultsym.1997.661861
  22. Mickens, R. A. (1993). Nonstandard finite difference models of differential equations. Singapore: World Scientific, 264. doi: 10.1142/2081
  23. Morkun, V., Morkun, N., Pikilnyak, A. (2014). The adaptive control for intensity of ultrasonic influence on iron ore pulp. Metallurgical and Mining Industry, 6, 8–11.
  24. Soneson, J. HIFU Simulator v1.2. Available at: http://www.mathworks.com/matlabcentral/fileexchange/30886-high-intensity-focused-ultrasound-simulator
  25. Vlasko-Vlasov, V. K., Tykhomyrov, O. A. (1991). Kolyvannia monopoliarnykh domennykh stinok v pole ultrazvukovoi khvyli. Fizyka tverdoho tila, 33 (12), 3498–3501.
  26. Kyrenskyi, L. V., Drokyn, A. I., Cherkashyn, V. S. (1960). Vplyv ultrazvuku na mahnitni vlastyvosti feromahnetykiv pry riznykh temperaturakh. Mahnitna struktura feromahnetykiv, 165–173.
  27. Wooh, S.-C., Shi, Y. (1998). Optimization of Ultrasonic Phased Arrays. Review of Progress in Quantitative Nondestructive Evaluation, 883–890. doi: 10.1007/978-1-4615-5339-7_114
  28. Silk, M. G. (1984). Ultrasonic transducers for nondestructive testing. Bristol: Adam Hilger Ltd, 176.
  29. Rozenberg, L. D. (1970). Fizicheskie osnovy ul'trazvukovoy tekhnologii. Moscow: Nauka, 678.
  30. Kur'yakov, V. N. (2013). Issledovanie vozdeystviya ul'trazvukovogo dispergirovaniya na kinetiku agregatsii asfal'tenov v model'nyh sistemah. Georesursy, geoenergetika, geopolitika, 2 (8), 22–30.
  31. Golik, V., Komashchenko, V., Morkun, V., Burdzieva, O. (2015). Metal deposits combined development experience. Metallurgical and Mining Industry, 6, 591–594.
  32. Morkun, V., Tron, V. (2014). Automation of iron ore raw materials beneficiation with the operational recognition of its varieties in process streams. Metallurgical and Mining Industry, 6, 4–7.
  33. Norori-McCormac, A., Brito-Parada, P. R., Hadler, K., Cole, K., Cilliers, J. J. (2017). The effect of particle size distribution on froth stability in flotation. Separation and Purification Technology, 184, 240–247. doi: 10.1016/j.seppur.2017.04.022
  34. Sahoo, H., Rath, S. S., Rao, D. S., Mishra, B. K., Das, B. (2016). Role of silica and alumina content in the flotation of iron ores. International Journal of Mineral Processing, 148, 83–91. doi: 10.1016/j.minpro.2016.01.021
  35. Morkun, V., Tron, V. (2014). Ore preparation multi-criteria energy-efficient automated control with considering the ecological and economic factors. Metallurgical and Mining Industry, 5, 4–7.
  36. Kupin, A. (2014). Research of properties of conditionality of task to optimization of processes of concentrating technology is on the basis of application of neural networks. Metallurgical and Mining Industry, 4, 51–55.
  37. Yu, J., Han, Y., Li, Y., Gao, P. (2017). Beneficiation of an iron ore fines by magnetization roasting and magnetic separation. International Journal of Mineral Processing, 168, 102–108. doi: 10.1016/j.minpro.2017.09.012
  38. Morkun, V., Morkun, N., Tron, V. (2015). Model synthesis of nonlinear nonstationary dynamical systems in concentrating production using Volterra kernel transformation. Metallurgical and Mining Industry, 10, 6–9.
  39. Ebadnejad, A. (2016). Investigating of the effect of ore work index and particle size on the grinding modeling of some copper sulphide ores. Journal of Materials Research and Technology, 5 (2), 101–110. doi: 10.1016/j.jmrt.2015.05.002
  40. Morkun, V., Morkun, N., Tron, V. (2015). Distributed closed-loop control formation for technological line of iron ore raw materials beneficiation. Metallurgical and Mining Industry, 7, 16–19.
  41. Wołosiewicz-Głąb, M., Ogonowski, S., Foszcz, D. (2016). Construction of the electromagnetic mill with the grinding system, classification of crushed minerals and the control system. IFAC-PapersOnLine, 49 (20), 67–71. doi: 10.1016/j.ifacol.2016.10.098
  42. Morkun, V., Morkun, N., Tron, V. (2015). Formalization and frequency analysis of robust control of ore beneficiation technological processes under parametric. Metallurgical and Mining Industry, 5, 7–11.

Downloads

Published

2017-12-15

How to Cite

Morkun, V., Gubin, G., Oliinyk, T., Lotous, V., Ravinskaia, V., Tron, V., Morkun, N., & Oliinyk, M. (2017). High-energy ultrasound to improve the quality of purifying the particles of iron ore in the process of its enrichment. Eastern-European Journal of Enterprise Technologies, 6(12 (90), 41–51. https://doi.org/10.15587/1729-4061.2017.118448

Issue

Section

Materials Science