Research of the intramolecular interactions and structure in epoxyamine composites with dispersed oxides
DOI:
https://doi.org/10.15587/1729-4061.2017.118565Keywords:
intermolecular interaction, epoxyamine polymer composite, dispersed oxide filler, acidic-basic propertiesAbstract
With the help of the software package HyprChem, using a method of quantum-chemical modeling, research into intermolecular interactions between epoxyamine grid and oxides of different chemical nature Al2O3, Fe2O3, TiO2, СаО was carried out. To take into account hydroxyl-hydrate surface layer of oxides, molecular complexes of the fragment of epoxyamine grid and hydroxides of metals Al(OH)3, Fe(OH)3, Ti(OH)4, Ca(OH)2 were used as models. As a result of modeling, it was established that Ca(OH)2 molecule forms strong intermolecular bonds and has the greatest influence on the spatial conformation of the epoxyamine fragment. It was shown that a calcium atom is oriented to π-electron cloud of the benzene ring with formation of donor-acceptor bond, and OH-groups form hydrogen bonds with OH-groups of the residue of a molecule of epoxy oligomer in the grid. The studied intermolecular interactions of epoxyamine grid and hydroxides of amphoteric metals Al(OH)3, Fe(OH)3, Ti(OH)4 indicate the formation of low-energy inductive and dipole-dipole (orientation) bonds. It was established that existence of amphoteric hydroxides does not cause a change of the spatial conformation of the grid’s fragment. It was shown that the ability of hydroxides of metals to affect the spatial conformation of a fragment of the epoxyamine grid increases in the series: Ti(OH)3<Al(OH)3<Fe(OH)3<Ca(OH)2. The resulting series coincides with the series, in which basic properties of active Branstad centers (OH-groups) with the central elements Ti4+<Al3+<Fe3+<Ca2+ increase (acidic properties decrease). The influence of the oxide filler on the structure and spatial conformation of epoxyamine grid increases with an increase of basicity (alkalinity) of an oxide. Resistance of composites to aqueous aggressive media depends on the surface acidic-basic properties, dispersion and package density of fillers’ particles in the polymer matrix. When adding strongly basic calcite oxide (CL), chemical resistance of composites decreases by 5 times. In this case, composites with non-homogeneous structure and non-uniform distribution of compacted areas are formed. It was found that when adding amphoteric rutile oxides (RT), alumina (AL) and hematite (HM), the main factors that affect chemical resistance of filled composites include dispersion and package density of fillers’ particles. The calculated parameter a of composites, which describes package density of the filler in the polymer matrix, increases in the series of fillers HM<RT<AL. This series coincides with the series, in which resistance of filled composites in all aggressive media decreases. At an increase in package density of a filler, probability of pegridration of aggressive medium into the material decreases, which is associated with extension of the diffusion path.
References
- Pohl, G. (2010). Textiles, Polymers and Composites for Buildings. Woodhead Publishing, 512. doi: 10.1533/9780845699994
- Fink, J. (2017). Reactive Polymers: Fundamentals and Applications. William Andrew, 800.
- Horohordin, A. M., Horohordina, E. A., Rudakov, O. B. (2017). Epoksidnye kompozitsii v stroitel'stve (obzor). Nauchniy Vestnik Voronezhskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta, 1 (14), 7–18.
- Osipchik, V. S., Yakovleva, R. A., Spirina, E. Y., Obizhenko, T. N., Rybka, E. A., Kondratenko, A. V. (2011). Influence of the composition of the redox system on the thermo-oxidative degradation of intercalated graphites. International polymer science and technology, 38 (1), 53–56.
- Kovaleva, E. G., Radoutskiy, V. Yu. (2011). Epoksidnye polimery v stroitel'stve: problemy i perspektivy. Vestnik Belgorod. gosud. tekhnol. un-ta. im. V. G. Shuhova, 2, 39–42.
- Lebediev, Ye. V., Saveliev, Yu. V., Koliada, V. M. (2011). Funktsionalni polimery ta kompozytsiyni materialy na yikh osnovi dlia budivnytstva. Budivelni materialy, vyroby ta sanitarna tekhnika, 42, 76–80.
- Chebotareva, E. A., Vishnyakov, L. R. (2012). Polimernye kompozitsionnye materialy: formirovanie struktury i vliyanie na ee svoystva (obzor). Visnyk inzhenernoi akademii Ukrainy, 2, 157–163.
- Kumar, Sh. Sh. (2015). Application of nano pigment particles for the development in corrosion and scratch resistance of epoxy-zeolite coating. Intern. Journ. of Eng. and Appl. Sci. (IJEAS), 2 (11), 103–109.
- Hozin, V. G. (2014). Polimery v stroitel'stve – real'nye granitsy i perspektivy effektivnogo primeneniya. Polimery v stroitel'stve, 1 (1), 9–26.
- Andronov, V. A., Danchenko, Yu. M., Skripinets, A. V., Bukchman, O. M. (2014). Efficiency of utilization of vibration-absorbing polimer coating for reducing local vibration. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 85–91.
- Dasari, A., Yu, Z.-Z., Cai, G.-P., Mai, Y.-W. (2013). Recent developments in the fire retardancy of polymeric materials. Progress in Polymer Science, 38 (9), 1357–1387. doi: 10.1016/j.progpolymsci.2013.06.006
- Li, R., Zhang, H., Zhou, C., Zhang, B., Chen, Y., Zou, H., Liang, M. (2017). The thermal stability investigation of microencapsulated ammonium polyphosphate/siloxane-modified epoxy resin composites. Journal of Applied Polymer Science, 134 (36), 45272. doi: 10.1002/app.45272
- Fu, Y.-X., He, Z.-X., Mo, D.-C., Lu, S.-S. (2014). Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Applied Thermal Engineering, 66 (1-2), 493–498. doi: 10.1016/j.applthermaleng.2014.02.044
- Kudina, E. F. (2017). Vliyanie silikatsoderzhashchih napolniteley na svoystva kompozitov na osnove funktsionalizirovannoy epoksidnoy smoly. Polimernye materialy i tekhnologii, 3 (2), 49–55.
- Martyniuk, H. V. (2015). Vplyv napovniuvachiv na protses polimeryzatsiynoho otrymannia epoksydnykh kompozytiv. Perviy nezavisimiy nauchniy vestnik, 1, 36–39.
- Sitnikov, P. A., Ryabkov, Yu. I., Ryazanov, M. A., Belyh, A. G., Vaseneva, I. N., Fedoseev, M. S., Tereshatov, V. V. (2013). Vliyanie kislotno-osnovnyh svoystv poverhnosti oksida alyuminiya na reaktsionnuyu sposobnost' s epoksidnymi soedineniyami. Izvestiya Komi nauchnogo tsentra UrO RAN, 3 (15), 19–26.
- Sitnikov, P. A., Ryabkov, Yu. I., Belyh, A. G., Vaseneva, I. N., Kuchin, A. V. (2016). Fiziko-himicheskie zakonomernosti sozdaniya novyh gibridnyh epoksipolimernyh nanokompozitov s povyshennymi prochnostnymi harakteristikami. Izvestiya Komi nauchnogo tsentra UrO RAN, 1 (25), 18–22.
- Li, F.-Z., Lu, Z.-L., Yang, Z.-H., Qi, K. (2015). Surface interaction energy simulation of ceramic materials with epoxy resin. Polimery, 60 (07/08), 468–471. doi: 10.14314/polimery.2015.468
- Demchenko, V. L., Unrod, V. I., Benenko, S. P. (2013). Vplyv napovniuvachiv na protsesy strukturoutvorennia ta vlastyvosti polimernykh kompozytsiynykh materialiv. Visnyk ChDTU, 4, 149–154.
- Shtompel, V. I., Demchenko, V. L., Vilenskyi, V. O., Kercha, Yu. Yu. (2008). Mikroheterohenna struktura kompozytiv na osnovi epoksydnoi smoly ta oksydu Fe(III) abo Al(III). Polimernyi zhurnal, 30 (3), 233–238.
- Petryuk, I. P. (2014). Vliyanie parametrov dispersnoy struktury na soderzhanie mezhfaznogo sloya v napolnennyh polimerah. Plasticheskie massy, 5-6, 7–9.
- Tarasevich, Yu. I. (2011). Poverhnostnye yavleniya na dispersnyh materialah. Kyiv: Naukova dumka, 390.
- Danchenko, Y., Andronov, V., Rybka, E., Skliarov, S. (2017). Investigation into acidbasic equilibrium on the surface of oxides with various chemical nature. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 17–25. doi: 10.15587/1729-4061.2017.108946
- Aniskevich, K. K., Glaskova, T. I., Aniskevich, A. N., Faitelson, Y. A. (2011). Effect of moisture on the viscoelastic properties of an epoxy-clay nanocomposite. Mechanics of Composite Materials, 46 (6), 573–582. doi: 10.1007/s11029-011-9172-3
- Danchenko, Y. M., Bykov, R. O., Kachomanova, M. P., Obizhenko, T. M., Bilous, N. H., Antonov, A. V. (2013). Environmentally friendly epoxyamine filled compositions curing under the low temperatures. Eastern-European Journal of Enterprise Technologies, 6 (10 (66)), 9–12. Available at: http://journals.uran.ua/eejet/article/view/19165/17024
- Danchenko, Yu. M., Popov, Yu. V., Barabash, O. S. (2016). Vplyv kyslotno-osnovnykh vlastyvostei poverkhni poli mineralnykh napovniuvachiv na strukturu ta kharakterystyky epoksykompozytiv. Voprosy himii i himicheskoy tekhnologii, 3, 53–60.
- Danchenko, Y., Andronov, V., Kariev, A., Lebedev, V., Rybka, E., Meleshchenko, R., Yavorska, D. (2017). Research into surface properties of disperse fillers based on plant raw materials. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 20–26. doi: 10.15587/1729-4061.2017.111350
- Laboratorniy praktikum «Kvantovo-himicheskoe modelirovanie soedineniy v pakete HyperChem» (2013). Kemerovo, 175.
- Barabash, O. S., Popov, Yu. V., Danchenko, Yu. M. (2017). Vyvchennia vplyvu malykh domishok poverkhnevo-aktyvnykh ta kremniyorhanichnykh rechovyn na protsesy tverdinnia epoksyaminnykh zviazuiuchykh. Zbirnyk naukovykh prats Ukrainskoho derzhavnoho universytetu zaliznychnoho transportu, 170, 104–111.
- Pyhtin, A. A., Surikov, P. V., Kandyrin, L. B., Kuleznev, V. N. (2013). Vliyanie ul'tradispersnyh napolniteley na svoystva nizkomolekulyarnyh zhidkostey i kompozitsiy na osnove epoksidnyh oligomerov. Vestnik MITHT, 8 (4), 113–117.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Yuliya Danchenko, Vladimir Andronov, Elena Barabash, Tatyana Obigenko, Evgeniy Rybka, Ruslan Meleshchenko, Andrey Romin
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.