Research of the intramolecular interactions and structure in epoxyamine composites with dispersed oxides

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.118565

Keywords:

intermolecular interaction, epoxyamine polymer composite, dispersed oxide filler, acidic-basic properties

Abstract

With the help of the software package HyprChem, using a method of quantum-chemical modeling, research into intermolecular interactions between epoxyamine grid and oxides of different chemical nature Al2O3, Fe2O3, TiO2, СаО was carried out. To take into account hydroxyl-hydrate surface layer of oxides, molecular complexes of the fragment of epoxyamine grid and hydroxides of metals Al(OH)3, Fe(OH)3, Ti(OH)4, Ca(OH)2 were used as models. As a result of modeling, it was established that Ca(OH)2 molecule forms strong intermolecular bonds and has the greatest influence on the spatial conformation of the epoxyamine fragment. It was shown that a calcium atom is oriented to π-electron cloud of the benzene ring with formation of donor-acceptor bond, and OH-groups form hydrogen bonds with OH-groups of the residue of a molecule of epoxy oligomer in the grid. The studied intermolecular interactions of epoxyamine grid and hydroxides of amphoteric metals Al(OH)3, Fe(OH)3, Ti(OH)4 indicate the formation of low-energy inductive and dipole-dipole (orientation) bonds. It was established that existence of amphoteric hydroxides does not cause a change of the spatial conformation of the grid’s fragment. It was shown that the ability of hydroxides of metals to affect the spatial conformation of a fragment of the epoxyamine grid increases in the series: Ti(OH)3<Al(OH)3<Fe(OH)3<Ca(OH)2. The resulting series coincides with the series, in which basic properties of active Branstad centers (OH-groups) with the central elements Ti4+<Al3+<Fe3+<Ca2+ increase (acidic properties decrease). The influence of the oxide filler on the structure and spatial conformation of epoxyamine grid increases with an increase of basicity (alkalinity) of an oxide. Resistance of composites to aqueous aggressive media depends on the surface acidic-basic properties, dispersion and package density of fillers’ particles in the polymer matrix. When adding strongly basic calcite oxide (CL), chemical resistance of composites decreases by 5 times. In this case, composites with non-homogeneous structure and non-uniform distribution of compacted areas are formed. It was found that when adding amphoteric rutile oxides (RT), alumina (AL) and hematite (HM), the main factors that affect chemical resistance of filled composites include dispersion and package density of fillers’ particles. The calculated parameter a of composites, which describes package density of the filler in the polymer matrix, increases in the series of fillers HM<RT<AL. This series coincides with the series, in which resistance of filled composites in all aggressive media decreases. At an increase in package density of a filler, probability of pegridration of aggressive medium into the material decreases, which is associated with extension of the diffusion path.

Author Biographies

Yuliya Danchenko, Kharkiv National University of Civil Engineering and Architecture Sumska str., 40, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of General Chemistry

 

Vladimir Andronov, National University of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Research Center

Elena Barabash, Kharkiv National University of Civil Engineering and Architecture Sumska str., 40, Kharkiv, Ukraine, 61002

Engineer

Department of General Chemistry

Tatyana Obigenko, Kharkiv National University of Civil Engineering and Architecture Sumska str., 40, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of general chemistry

Evgeniy Rybka, National University of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Research Center

Ruslan Meleshchenko, National University of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Department of fire and rescue training

Andrey Romin, National University of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of science in Public Administration, Associate Professor

Head of faculty

References

  1. Pohl, G. (2010). Textiles, Polymers and Composites for Buildings. Woodhead Publishing, 512. doi: 10.1533/9780845699994
  2. Fink, J. (2017). Reactive Polymers: Fundamentals and Applications. William Andrew, 800.
  3. Horohordin, A. M., Horohordina, E. A., Rudakov, O. B. (2017). Epoksidnye kompozitsii v stroitel'stve (obzor). Nauchniy Vestnik Voronezhskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta, 1 (14), 7–18.
  4. Osipchik, V. S., Yakovleva, R. A., Spirina, E. Y., Obizhenko, T. N., Rybka, E. A., Kondratenko, A. V. (2011). Influence of the composition of the redox system on the thermo-oxidative degradation of intercalated graphites. International polymer science and technology, 38 (1), 53–56.
  5. Kovaleva, E. G., Radoutskiy, V. Yu. (2011). Epoksidnye polimery v stroitel'stve: problemy i perspektivy. Vestnik Belgorod. gosud. tekhnol. un-ta. im. V. G. Shuhova, 2, 39–42.
  6. Lebediev, Ye. V., Saveliev, Yu. V., Koliada, V. M. (2011). Funktsionalni polimery ta kompozytsiyni materialy na yikh osnovi dlia budivnytstva. Budivelni materialy, vyroby ta sanitarna tekhnika, 42, 76–80.
  7. Chebotareva, E. A., Vishnyakov, L. R. (2012). Polimernye kompozitsionnye materialy: formirovanie struktury i vliyanie na ee svoystva (obzor). Visnyk inzhenernoi akademii Ukrainy, 2, 157–163.
  8. Kumar, Sh. Sh. (2015). Application of nano pigment particles for the development in corrosion and scratch resistance of epoxy-zeolite coating. Intern. Journ. of Eng. and Appl. Sci. (IJEAS), 2 (11), 103–109.
  9. Hozin, V. G. (2014). Polimery v stroitel'stve – real'nye granitsy i perspektivy effektivnogo primeneniya. Polimery v stroitel'stve, 1 (1), 9–26.
  10. Andronov, V. A., Danchenko, Yu. M., Skripinets, A. V., Bukchman, O. M. (2014). Efficiency of utilization of vibration-absorbing polimer coating for reducing local vibration. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 85–91.
  11. Dasari, A., Yu, Z.-Z., Cai, G.-P., Mai, Y.-W. (2013). Recent developments in the fire retardancy of polymeric materials. Progress in Polymer Science, 38 (9), 1357–1387. doi: 10.1016/j.progpolymsci.2013.06.006
  12. Li, R., Zhang, H., Zhou, C., Zhang, B., Chen, Y., Zou, H., Liang, M. (2017). The thermal stability investigation of microencapsulated ammonium polyphosphate/siloxane-modified epoxy resin composites. Journal of Applied Polymer Science, 134 (36), 45272. doi: 10.1002/app.45272
  13. Fu, Y.-X., He, Z.-X., Mo, D.-C., Lu, S.-S. (2014). Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Applied Thermal Engineering, 66 (1-2), 493–498. doi: 10.1016/j.applthermaleng.2014.02.044
  14. Kudina, E. F. (2017). Vliyanie silikatsoderzhashchih napolniteley na svoystva kompozitov na osnove funktsionalizirovannoy epoksidnoy smoly. Polimernye materialy i tekhnologii, 3 (2), 49–55.
  15. Martyniuk, H. V. (2015). Vplyv napovniuvachiv na protses polimeryzatsiynoho otrymannia epoksydnykh kompozytiv. Perviy nezavisimiy nauchniy vestnik, 1, 36–39.
  16. Sitnikov, P. A., Ryabkov, Yu. I., Ryazanov, M. A., Belyh, A. G., Vaseneva, I. N., Fedoseev, M. S., Tereshatov, V. V. (2013). Vliyanie kislotno-osnovnyh svoystv poverhnosti oksida alyuminiya na reaktsionnuyu sposobnost' s epoksidnymi soedineniyami. Izvestiya Komi nauchnogo tsentra UrO RAN, 3 (15), 19–26.
  17. Sitnikov, P. A., Ryabkov, Yu. I., Belyh, A. G., Vaseneva, I. N., Kuchin, A. V. (2016). Fiziko-himicheskie zakonomernosti sozdaniya novyh gibridnyh epoksipolimernyh nanokompozitov s povyshennymi prochnostnymi harakteristikami. Izvestiya Komi nauchnogo tsentra UrO RAN, 1 (25), 18–22.
  18. Li, F.-Z., Lu, Z.-L., Yang, Z.-H., Qi, K. (2015). Surface interaction energy simulation of ceramic materials with epoxy resin. Polimery, 60 (07/08), 468–471. doi: 10.14314/polimery.2015.468
  19. Demchenko, V. L., Unrod, V. I., Benenko, S. P. (2013). Vplyv napovniuvachiv na protsesy strukturoutvorennia ta vlastyvosti polimernykh kompozytsiynykh materialiv. Visnyk ChDTU, 4, 149–154.
  20. Shtompel, V. I., Demchenko, V. L., Vilenskyi, V. O., Kercha, Yu. Yu. (2008). Mikroheterohenna struktura kompozytiv na osnovi epoksydnoi smoly ta oksydu Fe(III) abo Al(III). Polimernyi zhurnal, 30 (3), 233–238.
  21. Petryuk, I. P. (2014). Vliyanie parametrov dispersnoy struktury na soderzhanie mezhfaznogo sloya v napolnennyh polimerah. Plasticheskie massy, 5-6, 7–9.
  22. Tarasevich, Yu. I. (2011). Poverhnostnye yavleniya na dispersnyh materialah. Kyiv: Naukova dumka, 390.
  23. Danchenko, Y., Andronov, V., Rybka, E., Skliarov, S. (2017). Investigation into acid­basic equilibrium on the surface of oxides with various chemical nature. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 17–25. doi: 10.15587/1729-4061.2017.108946
  24. Aniskevich, K. K., Glaskova, T. I., Aniskevich, A. N., Faitelson, Y. A. (2011). Effect of moisture on the viscoelastic properties of an epoxy-clay nanocomposite. Mechanics of Composite Materials, 46 (6), 573–582. doi: 10.1007/s11029-011-9172-3
  25. Danchenko, Y. M., Bykov, R. O., Kachomanova, M. P., Obizhenko, T. M., Bilous, N. H., Antonov, A. V. (2013). Environmentally friendly epoxyamine filled compositions curing under the low temperatures. Eastern-European Journal of Enterprise Technologies, 6 (10 (66)), 9–12. Available at: http://journals.uran.ua/eejet/article/view/19165/17024
  26. Danchenko, Yu. M., Popov, Yu. V., Barabash, O. S. (2016). Vplyv kyslotno-osnovnykh vlastyvostei poverkhni poli mineralnykh napovniuvachiv na strukturu ta kharakterystyky epoksykompozytiv. Voprosy himii i himicheskoy tekhnologii, 3, 53–60.
  27. Danchenko, Y., Andronov, V., Kariev, A., Lebedev, V., Rybka, E., Meleshchenko, R., Yavorska, D. (2017). Research into surface properties of disperse fillers based on plant raw materials. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 20–26. doi: 10.15587/1729-4061.2017.111350
  28. Laboratorniy praktikum «Kvantovo-himicheskoe modelirovanie soedineniy v pakete HyperChem» (2013). Kemerovo, 175.
  29. Barabash, O. S., Popov, Yu. V., Danchenko, Yu. M. (2017). Vyvchennia vplyvu malykh domishok poverkhnevo-aktyvnykh ta kremniyorhanichnykh rechovyn na protsesy tverdinnia epoksyaminnykh zviazuiuchykh. Zbirnyk naukovykh prats Ukrainskoho derzhavnoho universytetu zaliznychnoho transportu, 170, 104–111.
  30. Pyhtin, A. A., Surikov, P. V., Kandyrin, L. B., Kuleznev, V. N. (2013). Vliyanie ul'tradispersnyh napolniteley na svoystva nizkomolekulyarnyh zhidkostey i kompozitsiy na osnove epoksidnyh oligomerov. Vestnik MITHT, 8 (4), 113–117.

Downloads

Published

2017-12-15

How to Cite

Danchenko, Y., Andronov, V., Barabash, E., Obigenko, T., Rybka, E., Meleshchenko, R., & Romin, A. (2017). Research of the intramolecular interactions and structure in epoxyamine composites with dispersed oxides. Eastern-European Journal of Enterprise Technologies, 6(12 (90), 4–12. https://doi.org/10.15587/1729-4061.2017.118565

Issue

Section

Materials Science