Development of a theoretical model for the intensification of technological processes for manufacturing dairy products

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.120875

Keywords:

theoretical modeling, thermodynamic potential, ionic calcium, micellar calcium, phase equilibrium, coagulation, conditions of stability, decalcification, cottage cheese, sour milk cheese

Abstract

A dependence is established between the amount and forms of calcium in milk and its technological purpose. It is proven that a controlled reduction in the content of calcium in milk (specifically, its ionic form) increases thermal stability of milk in the range of lowered values of pH, which resolves the task on compatible use of milk and acid-containing raw materials (concentrates of juices and puree) in the composition of beverages. The substantiated increase of ionic calcium in milk also implements the principles of optimization of technological processes for its processing, in particular when producing cottage cheese. We constructed a theoretical model of the controlled intensified technologies of dairy products, underlying which is the quantitative and qualitative analysis of physical-chemical properties of the components of compounds in the system "milk", specifically calcium. It was proven that in line with the devised model the process of stabilization/destabilization of the colloidal state of the system "milk" is accompanied by the formation of a new phase under condition of introducing certain substances that can control the thermodynamical potential of the system. The model developed was verified in the course of implementation of the technological process for manufacturing skimmed milk with controlled thermal stability. It was proven that the introduction of sodium alginate to the system "milk" leads to a reduction of the undesirable potential through lowering and redistribution of calcium by forms.

It is shown that a given effect is the result of decomposition of casein micelles into submicelles and it manifests itself by an increase in the resistance of the system to thermal influence. We tested the devised model in the course of implementation of the technological process for manufacturing cottage cheese. It was proven that the controlled regulation of the content of ionized calcium and pH of the system through blending the system "milk" with the transformed system (serum) in certain quantities makes it possible to intensify the technological process for manufacturing sour milk cheese and to obtain products with high organoleptic properties

Author Biography

Nataliya Grynchenko, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of Meat Processing Technologies

References

  1. Ménard, O., Ahmad, S., Rousseau, F., Briard-Bion, V., Gaucheron, F., Lopez, C. (2010). Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chemistry, 120 (2), 544–551. doi: 10.1016/j.foodchem.2009.10.053
  2. Ahmad, S., Gaucher, I., Rousseau, F., Beaucher, E., Piot, M., Grongnet, J. F., Gaucheron, F. (2008). Effects of acidification on physico-chemical characteristics of buffalo milk: A comparison with cow’s milk. Food Chemistry, 106 (1), 11–17. doi: 10.1016/j.foodchem.2007.04.021
  3. Ye, A. (2008). Complexation between milk proteins and polysaccharides via electrostatic interaction: principles and applications – a review. International Journal of Food Science & Technology, 43 (3), 406–415. doi: 10.1111/j.1365-2621.2006.01454.x
  4. Martin, C., Ling, P.-R., Blackburn, G. (2016). Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients, 8 (5), 279. doi: 10.3390/nu8050279
  5. Shatnyuk, L. N., Spirichev, V. B., Kodentsova, V. M., Vrzhesinskaya, O. A. (2010). Obogashchenie molochnyh produktov: nauchnoe obosnovanie, normativnaya baza, prakticheskie resheniya. Molochnaya promyshlennost', 10, 34–39.
  6. Tromp, R. H., de Kruif, C. G., van Eijk, M., Rolin, C. (2004). On the mechanism of stabilisation of acidified milk drinks by pectin. Food Hydrocolloids, 18 (4), 565–572. doi: 10.1016/j.foodhyd.2003.09.005
  7. Livney, Y. D. (2010). Milk proteins as vehicles for bioactives. Current Opinion in Colloid & Interface Science, 15 (1-2), 73–83. doi: 10.1016/j.cocis.2009.11.002
  8. Golin'ko, O. N. (2011). Kislomolochnaya produktsiya: problemy ispol'zovaniya probiotikov. Produkty & Ingredienty, 8, 28–29.
  9. Smirnova, E. A., Kochetkova, A. A. (2011). Rynok funktsional'nyh molochnyh produktov. Molochnaya promyshlennost', 2, 63–67.
  10. Cassandro, M., Dalvit, C., Zanetti, E., De Marchi, M., Dal Zotto, R. (2007). Genetic aspects of milk coagulation properties in dairy cattle. Poljoprivreda, 13 (1), 30–34.
  11. Pogozhikh, M., Pak, A. (2017). The development of an artificial energotechnological process with the induced heat and mass transfer. Eastern-European Journal of Enterprise Technologies, 1 (8 (85)), 50–57. doi: 10.15587/1729-4061.2017.91748
  12. Frenkel D. (2014). Why colloidal systems can be described by statistical mechanics: some not very original comments on the Gibbs paradox. Molecular Physics, 112 (17), 2325–2329. doi: 10.1080/00268976.2014.904051
  13. Wasan, D. (2004). Texture and stability of emulsions and suspensions: role of oscillatory structural forces. Advances in Colloid and Interface Science, 108-109, 187–195. doi: 10.1016/s0001-8686(03)00150-7
  14. Marinova, K. G., Basheva, E. S., Nenova, B., Temelska, M., Mirarefi, A. Y., Campbell, B., Ivanov, I. B. (2009). Physico-chemical factors controlling the foamability and foam stability of milk proteins: Sodium caseinate and whey protein concentrates. Food Hydrocolloids, 23 (7), 1864–1876. doi: 10.1016/j.foodhyd.2009.03.003
  15. Kühnl, W., Piry, A., Kaufmann, V., Grein, T., Ripperger, S., Kulozik, U. (2010). Impact of colloidal interactions on the flux in cross-flow microfiltration of milk at different pH values: A surface energy approach. Journal of Membrane Science, 352 (1-2), 107–115. doi: 10.1016/j.memsci.2010.02.006
  16. McSweeney, S. L., Mulvihill, D. M., O’Callaghan, D. M. (2004). The influence of pH on the heat-induced aggregation of model milk protein ingredient systems and model infant formula emulsions stabilized by milk protein ingredients. Food Hydrocolloids, 18 (1), 109–125. doi: 10.1016/s0268-005x(03)00049-3
  17. Holt, C. (2004). An equilibrium thermodynamic model of the sequestration of calcium phosphate by casein micelles and its application to the calculation of the partition of salts in milk. European Biophysics Journal, 33 (5), 421–434. doi: 10.1007/s00249-003-0377-9
  18. Mekmene, O., Le Graët, Y., Gaucheron, F. (2009). A model for predicting salt equilibria in milk and mineral-enriched milks. Food Chemistry, 116 (1), 233–239. doi: 10.1016/j.foodchem.2009.02.039
  19. Galkin, V. A., Osetskiy, D. Yu. (2006). Matematicheskoe modelirovanie kinetiki koagulyatsii. Matematicheskoe modelirovanie, 18 (1), 99–116.
  20. Kuchin, I. V., Ur'ev, N. B. (2007). Modelirovanie protsessov strukturoobrazovaniya v dispersnyh sistemah. Zhurnal fizicheskoy himii, 81 (3), 421–425.
  21. Horne, D. S. (2006). Casein micelle structure: Models and muddles. Current Opinion in Colloid & Interface Science, 11 (2-3), 148–153. doi: 10.1016/j.cocis.2005.11.004
  22. De Kruif, C. G., Holt, C. (2003). Casein Micelle Structure, Functions and Interactions. Advanced Dairy Chemistry – 1 Proteins, 233–276. doi: 10.1007/978-1-4419-8602-3_5
  23. Osintsev, A. M., Braginskiy, V. I., Ostroumov, L. A. (2002). Modelirovanie induktsionnoy stadii koagulyatsii moloka. Hranenie i pererabotka sel'hozsyr'ya, 7, 9–13.
  24. Osintsev, A. (2014). Theoretical and Practical Aspects of the Thermographic Method for Milk Coagulation Research. Foods and Raw Materials, 2 (2), 147–155. doi: 10.12737/5473
  25. Shabarchina, E. Yu., Osintsev, A. M. (2003). Chislennoe modelirovanie protsessa koagulyatsii moloka. Tekhnologiya i tekhnika pishchevyh proizvodstv, 86–90.
  26. Faka, M., Lewis, M. J., Grandison, A. S., Deeth, H. (2009). The effect of free Ca2+ on the heat stability and other characteristics of low-heat skim milk powder. International Dairy Journal, 19 (6-7), 386–392. doi: 10.1016/j.idairyj.2008.12.006
  27. Udabage, P., McKinnon, I. R., Augustin, M. A. (2001). Effects of Mineral Salts and Calcium Chelating Agents on the Gelation of Renneted Skim Milk. Journal of Dairy Science, 84 (7), 1569–1575. doi: 10.3168/jds.s0022-0302(01)74589-4
  28. Tsioulpas, A., Lewis, M. J., Grandison, A. S. (2007). Effect of Minerals on Casein Micelle Stability of Cows' Milk. Journal of Dairy Research, 74 (02), 167. doi: 10.1017/s0022029906002330
  29. Klimov, A. V., D'yakonov, G. S., D'yakonov, S. G. (2004). Opisanie fazovyh perekhodov mnogokomponentnyh sistem na osnove integral'nyh uravneniy dlya chastichnyh funktsiy raspredeleniya. Zhurnal fizicheskoy himii, 78 (4), 602–608.
  30. Kaganovich, B. M., Keyko, A. V., Shamanskiy, V. A., Shirkalin, I. A. (2006). Opisanie neravnovesnyh protsessov v energeticheskih zadachah metodami ravnovesnoy termodinamiki. Izvestiya Rossiyskoy akademii nauk. Energetika, 3, 64–75.
  31. Plotnikova, R., Grynchenko, N., Pyvovarov, P. (2016). The study of sorption of the milk ionized calcium by sodium alginate. EUREKA: Life Sciences, 4, 45–48. doi: 10.21303/2504-5695.2016.00191
  32. Lewis, M. J. (2010). The measurement and significance of ionic calcium in milk – A review. International Journal of Dairy Technology, 64 (1), 1–13. doi: 10.1111/j.1471-0307.2010.00639.x
  33. ISO 6658:1985, IDT: DSTU ISO 6658:2005. Doslidzhennia sensorne. Metodolohiya. Zahalni nastanovy (2006). Kyiv: Derspozhyvstandart Ukrainy, 26.
  34. Plotnikova, R., Grynchenko, N., Pyvovarov, P. (2016). Study of influence of technological factors on the sorption of ionized calcium from skimmed milk by sodium alginate. Eastern-European Journal of Enterprise Technologies, 5 (11 (83)), 32–39. doi: 10.15587/1729-4061.2016.81413
  35. Xu, Y., Liu, D., Yang, H., Zhang, J., Liu, X., Regenstein, J. M. et. al. (2016). Effect of calcium sequestration by ion-exchange treatment on the dissociation of casein micelles in model milk protein concentrates. Food Hydrocolloids, 60, 59–66. doi: 10.1016/j.foodhyd.2016.03.026
  36. Mittal, V. A., Ellis, A., Ye, A., Das, S., Singh, H. (2015). Influence of calcium depletion on iron-binding properties of milk. Journal of Dairy Science, 98 (4), 2103–2113. doi: 10.3168/jds.2014-8474
  37. Grynchenko, N. (2018). Development of technology of semi-finished dessert products based on dairy and fruitberry raw materials using the principles of colloid stabilization of milk. EUREKA: Life Sciences, 1, 39–45. doi: 10.21303/2504-5695.2018.00539

Downloads

Published

2018-01-12

How to Cite

Grynchenko, N. (2018). Development of a theoretical model for the intensification of technological processes for manufacturing dairy products. Eastern-European Journal of Enterprise Technologies, 1(11 (91), 22–32. https://doi.org/10.15587/1729-4061.2018.120875

Issue

Section

Technology and Equipment of Food Production