Development of a theoretical model for the intensification of technological processes for manufacturing dairy products
DOI:
https://doi.org/10.15587/1729-4061.2018.120875Keywords:
theoretical modeling, thermodynamic potential, ionic calcium, micellar calcium, phase equilibrium, coagulation, conditions of stability, decalcification, cottage cheese, sour milk cheeseAbstract
A dependence is established between the amount and forms of calcium in milk and its technological purpose. It is proven that a controlled reduction in the content of calcium in milk (specifically, its ionic form) increases thermal stability of milk in the range of lowered values of pH, which resolves the task on compatible use of milk and acid-containing raw materials (concentrates of juices and puree) in the composition of beverages. The substantiated increase of ionic calcium in milk also implements the principles of optimization of technological processes for its processing, in particular when producing cottage cheese. We constructed a theoretical model of the controlled intensified technologies of dairy products, underlying which is the quantitative and qualitative analysis of physical-chemical properties of the components of compounds in the system "milk", specifically calcium. It was proven that in line with the devised model the process of stabilization/destabilization of the colloidal state of the system "milk" is accompanied by the formation of a new phase under condition of introducing certain substances that can control the thermodynamical potential of the system. The model developed was verified in the course of implementation of the technological process for manufacturing skimmed milk with controlled thermal stability. It was proven that the introduction of sodium alginate to the system "milk" leads to a reduction of the undesirable potential through lowering and redistribution of calcium by forms.
It is shown that a given effect is the result of decomposition of casein micelles into submicelles and it manifests itself by an increase in the resistance of the system to thermal influence. We tested the devised model in the course of implementation of the technological process for manufacturing cottage cheese. It was proven that the controlled regulation of the content of ionized calcium and pH of the system through blending the system "milk" with the transformed system (serum) in certain quantities makes it possible to intensify the technological process for manufacturing sour milk cheese and to obtain products with high organoleptic propertiesReferences
- Ménard, O., Ahmad, S., Rousseau, F., Briard-Bion, V., Gaucheron, F., Lopez, C. (2010). Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chemistry, 120 (2), 544–551. doi: 10.1016/j.foodchem.2009.10.053
- Ahmad, S., Gaucher, I., Rousseau, F., Beaucher, E., Piot, M., Grongnet, J. F., Gaucheron, F. (2008). Effects of acidification on physico-chemical characteristics of buffalo milk: A comparison with cow’s milk. Food Chemistry, 106 (1), 11–17. doi: 10.1016/j.foodchem.2007.04.021
- Ye, A. (2008). Complexation between milk proteins and polysaccharides via electrostatic interaction: principles and applications – a review. International Journal of Food Science & Technology, 43 (3), 406–415. doi: 10.1111/j.1365-2621.2006.01454.x
- Martin, C., Ling, P.-R., Blackburn, G. (2016). Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients, 8 (5), 279. doi: 10.3390/nu8050279
- Shatnyuk, L. N., Spirichev, V. B., Kodentsova, V. M., Vrzhesinskaya, O. A. (2010). Obogashchenie molochnyh produktov: nauchnoe obosnovanie, normativnaya baza, prakticheskie resheniya. Molochnaya promyshlennost', 10, 34–39.
- Tromp, R. H., de Kruif, C. G., van Eijk, M., Rolin, C. (2004). On the mechanism of stabilisation of acidified milk drinks by pectin. Food Hydrocolloids, 18 (4), 565–572. doi: 10.1016/j.foodhyd.2003.09.005
- Livney, Y. D. (2010). Milk proteins as vehicles for bioactives. Current Opinion in Colloid & Interface Science, 15 (1-2), 73–83. doi: 10.1016/j.cocis.2009.11.002
- Golin'ko, O. N. (2011). Kislomolochnaya produktsiya: problemy ispol'zovaniya probiotikov. Produkty & Ingredienty, 8, 28–29.
- Smirnova, E. A., Kochetkova, A. A. (2011). Rynok funktsional'nyh molochnyh produktov. Molochnaya promyshlennost', 2, 63–67.
- Cassandro, M., Dalvit, C., Zanetti, E., De Marchi, M., Dal Zotto, R. (2007). Genetic aspects of milk coagulation properties in dairy cattle. Poljoprivreda, 13 (1), 30–34.
- Pogozhikh, M., Pak, A. (2017). The development of an artificial energotechnological process with the induced heat and mass transfer. Eastern-European Journal of Enterprise Technologies, 1 (8 (85)), 50–57. doi: 10.15587/1729-4061.2017.91748
- Frenkel D. (2014). Why colloidal systems can be described by statistical mechanics: some not very original comments on the Gibbs paradox. Molecular Physics, 112 (17), 2325–2329. doi: 10.1080/00268976.2014.904051
- Wasan, D. (2004). Texture and stability of emulsions and suspensions: role of oscillatory structural forces. Advances in Colloid and Interface Science, 108-109, 187–195. doi: 10.1016/s0001-8686(03)00150-7
- Marinova, K. G., Basheva, E. S., Nenova, B., Temelska, M., Mirarefi, A. Y., Campbell, B., Ivanov, I. B. (2009). Physico-chemical factors controlling the foamability and foam stability of milk proteins: Sodium caseinate and whey protein concentrates. Food Hydrocolloids, 23 (7), 1864–1876. doi: 10.1016/j.foodhyd.2009.03.003
- Kühnl, W., Piry, A., Kaufmann, V., Grein, T., Ripperger, S., Kulozik, U. (2010). Impact of colloidal interactions on the flux in cross-flow microfiltration of milk at different pH values: A surface energy approach. Journal of Membrane Science, 352 (1-2), 107–115. doi: 10.1016/j.memsci.2010.02.006
- McSweeney, S. L., Mulvihill, D. M., O’Callaghan, D. M. (2004). The influence of pH on the heat-induced aggregation of model milk protein ingredient systems and model infant formula emulsions stabilized by milk protein ingredients. Food Hydrocolloids, 18 (1), 109–125. doi: 10.1016/s0268-005x(03)00049-3
- Holt, C. (2004). An equilibrium thermodynamic model of the sequestration of calcium phosphate by casein micelles and its application to the calculation of the partition of salts in milk. European Biophysics Journal, 33 (5), 421–434. doi: 10.1007/s00249-003-0377-9
- Mekmene, O., Le Graët, Y., Gaucheron, F. (2009). A model for predicting salt equilibria in milk and mineral-enriched milks. Food Chemistry, 116 (1), 233–239. doi: 10.1016/j.foodchem.2009.02.039
- Galkin, V. A., Osetskiy, D. Yu. (2006). Matematicheskoe modelirovanie kinetiki koagulyatsii. Matematicheskoe modelirovanie, 18 (1), 99–116.
- Kuchin, I. V., Ur'ev, N. B. (2007). Modelirovanie protsessov strukturoobrazovaniya v dispersnyh sistemah. Zhurnal fizicheskoy himii, 81 (3), 421–425.
- Horne, D. S. (2006). Casein micelle structure: Models and muddles. Current Opinion in Colloid & Interface Science, 11 (2-3), 148–153. doi: 10.1016/j.cocis.2005.11.004
- De Kruif, C. G., Holt, C. (2003). Casein Micelle Structure, Functions and Interactions. Advanced Dairy Chemistry – 1 Proteins, 233–276. doi: 10.1007/978-1-4419-8602-3_5
- Osintsev, A. M., Braginskiy, V. I., Ostroumov, L. A. (2002). Modelirovanie induktsionnoy stadii koagulyatsii moloka. Hranenie i pererabotka sel'hozsyr'ya, 7, 9–13.
- Osintsev, A. (2014). Theoretical and Practical Aspects of the Thermographic Method for Milk Coagulation Research. Foods and Raw Materials, 2 (2), 147–155. doi: 10.12737/5473
- Shabarchina, E. Yu., Osintsev, A. M. (2003). Chislennoe modelirovanie protsessa koagulyatsii moloka. Tekhnologiya i tekhnika pishchevyh proizvodstv, 86–90.
- Faka, M., Lewis, M. J., Grandison, A. S., Deeth, H. (2009). The effect of free Ca2+ on the heat stability and other characteristics of low-heat skim milk powder. International Dairy Journal, 19 (6-7), 386–392. doi: 10.1016/j.idairyj.2008.12.006
- Udabage, P., McKinnon, I. R., Augustin, M. A. (2001). Effects of Mineral Salts and Calcium Chelating Agents on the Gelation of Renneted Skim Milk. Journal of Dairy Science, 84 (7), 1569–1575. doi: 10.3168/jds.s0022-0302(01)74589-4
- Tsioulpas, A., Lewis, M. J., Grandison, A. S. (2007). Effect of Minerals on Casein Micelle Stability of Cows' Milk. Journal of Dairy Research, 74 (02), 167. doi: 10.1017/s0022029906002330
- Klimov, A. V., D'yakonov, G. S., D'yakonov, S. G. (2004). Opisanie fazovyh perekhodov mnogokomponentnyh sistem na osnove integral'nyh uravneniy dlya chastichnyh funktsiy raspredeleniya. Zhurnal fizicheskoy himii, 78 (4), 602–608.
- Kaganovich, B. M., Keyko, A. V., Shamanskiy, V. A., Shirkalin, I. A. (2006). Opisanie neravnovesnyh protsessov v energeticheskih zadachah metodami ravnovesnoy termodinamiki. Izvestiya Rossiyskoy akademii nauk. Energetika, 3, 64–75.
- Plotnikova, R., Grynchenko, N., Pyvovarov, P. (2016). The study of sorption of the milk ionized calcium by sodium alginate. EUREKA: Life Sciences, 4, 45–48. doi: 10.21303/2504-5695.2016.00191
- Lewis, M. J. (2010). The measurement and significance of ionic calcium in milk – A review. International Journal of Dairy Technology, 64 (1), 1–13. doi: 10.1111/j.1471-0307.2010.00639.x
- ISO 6658:1985, IDT: DSTU ISO 6658:2005. Doslidzhennia sensorne. Metodolohiya. Zahalni nastanovy (2006). Kyiv: Derspozhyvstandart Ukrainy, 26.
- Plotnikova, R., Grynchenko, N., Pyvovarov, P. (2016). Study of influence of technological factors on the sorption of ionized calcium from skimmed milk by sodium alginate. Eastern-European Journal of Enterprise Technologies, 5 (11 (83)), 32–39. doi: 10.15587/1729-4061.2016.81413
- Xu, Y., Liu, D., Yang, H., Zhang, J., Liu, X., Regenstein, J. M. et. al. (2016). Effect of calcium sequestration by ion-exchange treatment on the dissociation of casein micelles in model milk protein concentrates. Food Hydrocolloids, 60, 59–66. doi: 10.1016/j.foodhyd.2016.03.026
- Mittal, V. A., Ellis, A., Ye, A., Das, S., Singh, H. (2015). Influence of calcium depletion on iron-binding properties of milk. Journal of Dairy Science, 98 (4), 2103–2113. doi: 10.3168/jds.2014-8474
- Grynchenko, N. (2018). Development of technology of semi-finished dessert products based on dairy and fruitberry raw materials using the principles of colloid stabilization of milk. EUREKA: Life Sciences, 1, 39–45. doi: 10.21303/2504-5695.2018.00539
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Nataliya Grynchenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.