Development of the analitical method for nonlinear circuits analysis with the use of the admittance and resistance orthogonal components

Authors

  • Atef Saleh Al-Mashakbeh Tafila Technical University Et Tafila New Hauway str., 179, Tafila, Et Tafila, Jordan, 66110, Jordan

DOI:

https://doi.org/10.15587/1729-4061.2018.121874

Keywords:

instantaneous admittance, instantaneous resistance, frequency domain, electric circuit, nonlinearity, analytical method

Abstract

A method for the nonlinear electric circuit analysis with the use of the orthogonal components of instantaneous admittance and resistance is proposed. The mechanism of the generation of the admittance orthogonal components of a nonlinear electric circuit is demonstrated. The analytical expressions for the components of instantaneous admittance and resistance are given and analyzed. The balance equations for the components of instantaneous admittance and resistance are analyzed. On their basis, the harmonic components of the current of the nonlinear electric circuit consisting of an active linear and nonlinear resistance, connected in series, are determined. The accuracy and adequacy of the developed method are proved by the comparative analysis of the current harmonic components calculated with the use of the proposed method and the ones obtained as a result of the numerical calculation of the researched circuit mathematical model. The advantages of the proposed method include its versatility in the use, the possibility to assess the circuit parameters influence on the current spectrum composition, good adaptation to the automation of the calculations in the frequency domain, the ability to obtain the predicted result independently of the degree of the approximating polynomial and the number of the analyzed harmonics.

Author Biography

Atef Saleh Al-Mashakbeh, Tafila Technical University Et Tafila New Hauway str., 179, Tafila, Et Tafila, Jordan, 66110

PhD, Associate Professor

Department of Electrical Engineering 

References

  1. Nayfeh, А. H., Chen, C.-Y. (1999). Perturbation methods with mathematica. Nonlinear dynamic. Wiley, 437.
  2. Zhou, X., Zhou, D., Liu, J., Li, R., Zeng, X., Chiang, C. (2004). Steady-state analysis of nonlinear circuits using discrete singular convolution method. IEEE Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, 2, 1322–1326. doi: 10.1109/date.2004.1269078
  3. Li, X., Hu, B., Ling, X., Zeng, X (2002). A wavelet-balance approach for steady-state analysis of nonlinear circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49 (5), 689–694. doi: 10.1109/tcsi.2002.1001960
  4. Urabe, M. (1965). Galerkin's procedure for nonlinear periodic systems. Archive for Rational Mechanics and Analysis, 20 (2). doi: 10.1007/bf00284614
  5. Ushida, A., Adachi, T., Chua, L. O. (1992). Steady-state analysis of nonlinear circuits based on hybrid methods. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 39 (8), 649–661. doi: 10.1109/81.168917
  6. Zhu, L. (Lana), Christoffersen, C. E. (2006). Transient and Steady-State Analysis of Nonlinear RF and Microwave Circuits. EURASIP Journal on Wireless Communications and Networking, 2006, 1–11. doi: 10.1155/wcn/2006/32097
  7. Prus, V., Nikitina, A., Zagirnyak, M., Miljavec, D. (2011). Research of rnergy processes in circuits containing iron in saturation condition. Przegląd Elektrotechniczny (Electrical Review), 87 (3/2011), 149–152. Available at: http://pe.org.pl/articles/2011/3/39.pdf
  8. Osnach, A. (2011). The different options regarding power components in electric circuits. 11th International Conference on Electrical Power Quality and Utilisation. doi: 10.1109/epqu.2011.6128830
  9. Slonim, M. A. (2011). Limits in Application of Main Power Theories for Calculation of Active and Apparent Powers in Linear and Non-Linear Circuits and Systems. 2011 21st International Conference on Systems Engineering. doi: 10.1109/icseng.2011.64
  10. Zharskyi, B. K., Novskyi, V. О., Golubev, V. V. (2013). The conversion of electromagnetic energy parameters valve switches. Kyiv, 323.
  11. Takeuchi, G. (1973). Theory of gating circuit and application to motor control. Leningrad: Energiya, 279.
  12. Zagirnyak, M., Kalinov, A., Maliakova, M. (2013). Analysis of instantaneous power components of electric circuit with a semiconductor element. Archives of Electrical Engineering, 62 (3). doi: 10.2478/aee-2013-0038
  13. Zagirnyak, M., Maliakova, M., Kalinov, A. (2015). Analysis of electric circuits with semiconductor converters with the use of a small parameter method in frequency domain. COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 34 (3), 808–823. doi: 10.1108/compel-10-2014-0260
  14. Zagirnyak, M. V., Mamchur, D. G., Kalinov, A. P. (2010). Elimination of the influence of supply mains low-quality parameters on the results of induction motor diagnostics. The XIX International Conference on Electrical Machines – ICEM 2010. doi: 10.1109/icelmach.2010.5608071
  15. Demirchian, K. S., Neiman, L. R., Korovkin, N. V. (2009). Theoretical fundamentals of electrotechnics. Sankr-Reterburg, 432.
  16. Krogeris, K., Rasevitcs, J., Sinka, E. (1993). AC power. Riga, 294.
  17. Maas, S. (2009). Nonlinear microwave and RF circuits. Artech House Microwave Library, 680.
  18. Zagirnyak, M., Rod’kin, D., Korenkova, T. (2011). Enhancement of instantaneous power method in the problems of estimation of electromechanical complexes power controllability. Przeglad elektrotechniczny (Electrical review), 12b, 208–212. Available at: http://red.pe.org.pl/articles/2011/12b/58.pdf
  19. Zagirnyak, M., Kalinov, A., Melnykov, V. (2013). Sensorless vector control systems with the correction of stator windings asymmetry in induction motor. Przegląd elektrotechniczny (Electrical Review), 12, 340–343. Available at: http://red.pe.org.pl/articles/2013/12/83.pdf
  20. Melnykov, V., Kalinov, A. (2012). The increasing of energy characteristics of vector-controlled electric drives by means of compensation the induction motor parametrical asymmetry. Technical electrodynamics, 3, 85–86. Aailable at: http://techned.org.ua/2012_3/st40.pdf
  21. Zagirnyak, M., Kalinov, A., Chumachova, A. (2013). Correction of operating condition of a variable-frequency electric drive with a non-linear and asymmetric induction motor. Eurocon 2013. doi: 10.1109/eurocon.2013.6625108
  22. Al-Din, M. S. N., Al-Mashakbeh, A. S. (2010). Computation of magnetic losses in canned high-field PMSM using finite element method. European Journal of Scientific Research, 40 (3), 341–345. Available at: http://connection.ebscohost.com/c/articles/50881573/computation-magnetic-losses-canned-high-field-pmsm-using-finite-element-method
  23. Wai-Kai, C. (2009). Feedback, nonlinear, and distributed circuits, The circuits and filters handbook. CRC Press, New York, 466.
  24. Nastov, O. J. (2009). Spectral methods for circuit analysis. Proceedings of massachusetts institute of technology, 124.
  25. Luchetta, A., Manetti, S., Reatti, A. (2001). SAPWIN-a symbolic simulator as a support in electrical engineering education. IEEE Transactions on Education, 44 (2). doi: 10.1109/13.925868
  26. Huelsman, L. P. (1996). SAPWIN, Symbolic analysis program for Windows – PC programs for engineers. IEEE circuits and devices magazine, 6 (2), 4–6.
  27. Moura, L., Darwazeh, I. (2005). Introduction to linear circuit analysis and modelling from DC to RF, MatLAB and SPICE. Newnes, Burlington, 376.
  28. Raju, A. B., Karnik, S. R. (2009). SEQUEL: A Free Circuit Simulation Software as an Aid in Teaching the Principles of Power Electronics to Undergraduate Students. 2009 Second International Conference on Emerging Trends in Engineering & Technology. doi: 10.1109/icetet.2009.200
  29. Pires, V. F., Silva, J. F. A. (2002). Teaching nonlinear modeling, simulation, and control of electronic power converters using MATLAB/SIMULINK. IEEE Transactions on Education, 45 (3), 253–261. doi: 10.1109/te.2002.1024618
  30. Zagirnyak, M., Mamchur, D., Kalinov, A. (2014). A comparison of informative value of motor current and power spectra for the tasks of induction motor diagnostics. 2014 16th International Power Electronics and Motion Control Conference and Exposition. doi: 10.1109/epepemc.2014.6980549
  31. Zagirnyak, M., Mamchur, D., Kalinov, A. (2014). Induction motor diagnostic system based on spectra analysis of current and instantaneous power signals. IEEE SOUTHEASTCON 2014. doi: 10.1109/secon.2014.6950721
  32. Zagirnyak, M., Kalinov, A., Melnykov, V., Kochurov, I. (2015). Correction of the operating modes of an induction motor with asymmetrical stator windings at vector control. 2015 International Conference on Electrical Drives and Power Electronics (EDPE). doi: 10.1109/edpe.2015.7325303
  33. Zagirnyak, M., Maliakova, M., Kalinov, A. (2015). Analysis of operation of power components compensation systems at harmonic distortions of mains supply voltage. 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION). doi: 10.1109/optim.2015.7426958
  34. Al-Mashakbeh, A. S., Zagirnyak, M., Maliakova, M., Kalinov, A. (2017). Improvement of compensation method for non-active current components at mains supply voltage unbalance. Eastern-European Journal of Enterprise Technologies, 1 (8 (85)), 41–49. doi: 10.15587/1729-4061.2017.87316
  35. Zagirnyak, M., Maliakova, M., Kalinov, A. (2015). Compensation of higher current harmonics at harmonic distortions of mains supply voltage. 2015 16th International Conference on Computational Problems of Electrical Engineering (CPEE). doi: 10.1109/cpee.2015.7333388
  36. Zagirnyak, M., Kalinov, A., Maliakova, M. (2011). An algorithm for electric circuits calculation based on instantaneous power component balance. Przegląd elektrotechniczny (Electrical Review), 12b, 212–215. Available at: http://pe.org.pl/articles/2011/12b/59.pdf
  37. Al-Mashakbeh, A. S. O. (2009). Modern control design of power system. Australian journal of basic and applied sciences, 3 (4), 4267–4271. Available at: https://www.researchgate.net/publication/294390623_Modern_control_design_of_power_system

Downloads

Published

2018-01-29

How to Cite

Al-Mashakbeh, A. S. (2018). Development of the analitical method for nonlinear circuits analysis with the use of the admittance and resistance orthogonal components. Eastern-European Journal of Enterprise Technologies, 1(8 (91), 4–12. https://doi.org/10.15587/1729-4061.2018.121874

Issue

Section

Energy-saving technologies and equipment