Examining the technique to control the structure of current in vortex chambers by wing vortex generators

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.121962

Keywords:

coherent vortex structures, control over the structure of current, vortex chamber, wing vortex generator, mutual susceptibility of vortices

Abstract

A new technique was studied aimed at controlling energy-intensive coherent vortex structures (ECVS) that define the processes of mass- and heat transfer in vortex chambers. This is important because the swirled flows are employed in a wide class of machines and devices. The basic principle of the method implies rational organization of targeted controlling actions on ECVS using the systems of ordered vortex cords that run down the end edges of a miniature thin wing. The wing is mounted in a flow-through tract of the inlet nozzle of the vortex chamber at different angles of attack. Using the wing with a small elongation significantly extends the range of continuous angles of attack. Combined with strict requirements to the streamlined surfaces (especially near the leading edge of the wing), it reduces the aerodynamic drag. We obtained data on aerodynamic blowing for three types of profiles. Relatively thin profiles were selected to ensure the permanence of lifting coefficient over a rather wide range of the Reynolds numbers. Controlling actions at the maximum value of Reynolds number at the inlet to a nozzle Remax=95,000 and at the maximum continuous angles of attack of the wing MB253515 alsmost do not affect the chamber's aerodynamic drag. However, there is a growth of the relative intensity of velocity pulsation at the outlet of the chamber from 10 % to 2 2% for the circular component, and from 47 % to 63 % for the axial component. We propose theoretical and experimental substantiation of the examined technique based on the principle of mutual susceptibility of vortex structures.

Author Biographies

Vladimir Turick, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Fluid Mechanics and Mechatronics

Viktor Kochin, Institute of Hydromechanics, National Academy of Sciences of Ukraine Zhelyabova str., 8/4, Kyiv, Ukraine, 03057

PhD, Senior Researcher

Department of the Information Systems in Hydroaerodynamics and Ecology 

Mariia Kochina, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

Departament of fluid mechanics and mechatronics

References

  1. Mochalin, I. V., Khalatov, A. A. (2015). Centrifugal instability and turbulence development in Taylor–Couette flow with forced radial throughflow of high intensity. Physics of Fluids, 27 (9), 094102. doi: 10.1063/1.4930605
  2. Anikin, Yu. A., Anufriev, I. S., Shadrin, E. Yu., Sharypov, O. V. (2014). Diagnostika prostranstvennoy struktury zakruchennogo potoka v modeli vihrevoy topki. Teplofizika i aeromekhanika, 21 (6), 807–810.
  3. Cerretelli, C., Wuerz, W., Gharaibah, E. (2010). Unsteady Separation Control on Wind Turbine Blades using Fluidic Oscillators. AIAA Journal, 48 (7), 1302–1311. doi: 10.2514/1.42836
  4. Petel'chic, V. Yu., Halatov, A. A., Pis'menniy, D. N., Dashevskiy, Yu. Ya. (2016). Primenenie mestnyh uglubleniy pri plenochnom ohlazhdenii vhodnoy kromki lopatok gazovyh turbin. Teplofizika i aeromekhanika, 23 (5), 741–748.
  5. Terekhov, V. I., Shishkin, N. E. (2013). Sposoby povysheniya effektivnosti plenochnogo ohlazhdeniya s pomoshch'yu vihrevyh pristennyh struy. Teplofizika i aeromekhanika, 20 (6), 739–747.
  6. Saha, P., Biswas, G., Mandal, A. C., Sarkar, S. (2017). Investigation of coherent structures in a turbulent channel with built-in longitudinal vortex generators. International Journal of Heat and Mass Transfer, 104, 178–198. doi: 10.1016/j.ijheatmasstransfer.2016.07.105
  7. Chokphoemphun, S., Pimsarn, M., Thianpong, C., Promvonge, P. (2015). Heat transfer augmentation in a circular tube with winglet vortex generators. Chinese Journal of Chemical Engineering, 23 (4), 605–614. doi: 10.1016/j.cjche.2014.04.002
  8. Babenko, V. V., Chun, H. H., Lee, I. (2010). Coherent vortical structures and methods of their control for drag reduction of bodies. Journal of Hydrodynamics, Ser. B, 22 (5), 45–50. doi: 10.1016/s1001-6058(09)60167-0
  9. Babenko, V. V., Mahmud, A. F., Ishchenko, S. F. (2012). Upravlenie pogranichnogo sloya profilya kryla pri generirovanii trekhmernyh vozmushcheniy. Prikladgnaya gidromekhanika, 14 (1), 3–13.
  10. Udartsev, Ye. P., Shcherbonos, O. H. (2010). Eksperymentalne doslidzhennia kryla z heneratoramy vykhoriv. Visnyk NAU, 1, 45–47.
  11. Babenko, V. V., Turik, V. N. (2008). Maket vihrevyh struktur pri techenii potoka v vihrevoy kamere. Prykladna hidromekhanika, 10 (3), 3–19.
  12. Turick, V. N., Kochin, V. O. (2015). Passive methods of coherent vortical structures control in vortex chambers. Part 1. Spectral evaluation of efficiency. Research Bulletin of the National Technical University of Ukraine "Kyiv Polytechnic Institute", 6, 54–65. doi: 10.20535/1810-0546.2015.6.56084
  13. Turick, V. N., Kochin, V. O. (2016). Passive Methods of Coherent Vortical Structures Control in Vortex Chambers. Part 2. Dispersion Analysis of Efficiency. Research Bulletin of the National Technical University of Ukraine "Kyiv Polytechnic Institute", 5, 68–77. doi: 10.20535/1810-0546.2016.5.77463
  14. Drela, M. (2014). Flight Vehicle Aerodynamics. USA: The MIT Press, 304. Available at: https://mitpress.mit.edu/books/flight-vehicle-aerodynamics
  15. Tit'ens, O. (1935). Gidro- i aeromekhanika (po lekciyam prof. L. Prandtlya). Vol. 2. Dvizhenie zhidkostey s treniem i tekhnicheskie prilozheniya. Moscow-Leningtad: Ob'ed. nauch.-tekhn. izd-vo NKTP SSSR, 312.
  16. Glauert, G.; Aleksandrov V. L. (Ed.) (1931). Osnovy teorii kryl'ev i vinta. Moscow-Leningtad: GNTI, 163.
  17. Yur'ev, B. N. (1938). Eksperimental'naya aerodinamika. Ch. 2. Induktivnoe soprotivlenie. Moscow-Leningtad: OBORONGIZ, 275.
  18. Spravochnik aviakonstruktora. Vol. 1 (1937). Aerodinamika samoleta. Moscow: Izd. CAGI im. prof. N. E. Zhukovskogo, 512.
  19. Selig, M. S., Donovan, J. F., Fraser, D. B. (1989). Airfoils at Low Speeds. North Horseshoe Circle, Virginia Beach, USA, 398.
  20. Selig, M. S., Guglielmo, J. J., Broeren, A. P., Giguère, P. (1995). Summary of Low-Speed Airfoil Data. Vol. 1. SoarTech Publications, Virginia Beach, Virginia, USA, 292.
  21. Turik, V. N. (2006). O gidrodinamicheskoy neustoychivosti v vihrevyh kamerah. Promyslova hidravlika i pnevmatyka, 3 (13), 32–37.

Downloads

Published

2018-01-29

How to Cite

Turick, V., Kochin, V., & Kochina, M. (2018). Examining the technique to control the structure of current in vortex chambers by wing vortex generators. Eastern-European Journal of Enterprise Technologies, 1(5 (91), 28–38. https://doi.org/10.15587/1729-4061.2018.121962

Issue

Section

Applied physics