Prediction of operability of the plate rolling rolls based on the mixed fracture mechanism

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.122818

Keywords:

service life of the roll, residual life of the roll, method of survivability curves

Abstract

Influence of fracture of the mixed nature on the life of rolls of plate-rolling mills was considered. This is important because the time of trouble-free operation of plate-rolling rolls significantly affects the cost of the final product. However, there are objective difficulties connected with definition of the optimal model of prediction calculation of the final roll life because there is an insufficient definiteness of influence of the mixed fracture mechanism on the roll life.

Conventionally, when predicting roll durability, a posteriori models of the roll service life obtained by the methods of mathematical statistics are used. However, the use of such models causes some complexity since preliminary processing of large volumes of statistical information is required. In the framework of the study described in the article, solution to this problem was proposed by determining influence of the mechanism of a mixed fracture on the roll life. This influence indicates the possibility of using the method of survivability curves for estimating the roll durability.

Thus, an applied aspect of using the obtained scientific result is the possibility of improving the conventional method for calculating the roll service life. This, in turn, makes it possible to optimize previously obtained technological solutions for constructing a diagnostic algorithm of estimating the technical state of the plate-rolling rolls and predicting their residual life.

Author Biographies

Sergey Belodedenko, National Metallurgical Academy of Ukraine Gagarina ave., 4, Dnipro, Ukraine, 49600

Doctor of Technical Sciences, Professor, Head of Department

Department of Machines and Aggregates of Metallurgical Production

Alexey Grechany, STANDART PLUS LTD Mikhaylova str., 19/76, Zaporizhzhia, Ukraine, 69065

Technical Director

Andrey Yatsuba, PJSC "Dnepropetrovsk Aggregate Plant" Shchepkina str., 53, Dnipro, Ukraine, 49009

Chief Engineer

References

  1. Yashchura, A. I. (2006). Sistema tekhnicheskogo obsluzhivaniya i remonta obshchepromyshlennogo oborudovaniya. Moscow: Izd-vo NTS ENAS, 360.
  2. Belodedenko, S. V., Yatsuba, A. V., Klimenko, Y. M. (2015). Technical condition assessment and prediction of the survivability of the mill rolls. Metallurgical and Mining Industry, 1, 85–94.
  3. Appolonov, I. V. (Ed.) (1989). Nadezhnost' i effektivnost' v tekhnike. Vol. 7. Kachestvo i nadezhnost' v proizvodstve. Moscow: Mashinostroenie, 280.
  4. Zhil'tsov, A. P., Ahtyrtsev, S. A. (2013). Metod differentsirovannogo ucheta udel'nogo raskhoda valkov tonkolistovyh stanov v zavisimosti ot urovnya nagruzheniya i dlitel'nosti ekspluatatsii. Uspekhi sovremennogo estestvoznaniya, 9, 163–165.
  5. Steblov, A. B. (2010). Issledovanie iznosa sortovyh prokatnyh valkov. Proizvodstvo prokata, 10, 21–23.
  6. Troshchenko, V. T., Tsybanev, G. V., Gryaznov, B. A., Nalimov, Yu. S. (2009). Ustalost' metallov. Sostoyanie poverhnosti i kontaktnye vzaimodeystviya. Kyiv: In-t probl. prochnosti im G. S. Pisarenko NAN Ukrainy, 664.
  7. Holan, L., Pippan, R., Pokluda, J., Hornikova, J., Hohenwarter, A., Slamechka, K. (2009). Near–threshold propagation of Mode II and Mode III cracks. Crack paths (CP 2009). Vicenza, 585–592.
  8. Ohkomori, Y., Kitagawa, I., Shinozuka, K., Miyamoto, R., Yazaki, S., Inoue, M. (1988). Cause and Prevention of Spalling of Backup Rolls for Hot Strip Mill. Transactions of the Iron and Steel Institute of Japan, 28 (1), 68–74. doi: 10.2355/isijinternational1966.28.68
  9. Sekimoto, Y. (1970). Analysis of hot strip work roll damage due to cobble. Transactions ISIJ, 10, 341–349.
  10. Murakami, Y., Sakae, C., Hamada, S. (1999). Mechanism of rolling contact fatigue and measurement of ΔKIIth for steels. Engineering against fatigue. Rotterdam&Brookfield: A.A. Balkema Publ., 473–485.
  11. Romaniv, O. N., Yarema, S. Ya., Nikiforchin, G. I. et. al. (1990). Mekhanika razrusheniya i prochnost' materialov. Vol. 4. Ustalost' i tsiklicheskaya treshchinostoykost' konstruktsionnyh materialov. Kyiv: Naukova Dumka, 680.
  12. Kapadia, B. M., Marsden, K. W. (1996). Safe minimum operating diameter of duplex cast roll with shell/core interface separation. 37th MWSP conf. proc. ISS, 33, 221–242.
  13. Yamamoto, H., Uchida, S., Araya, S., Nakajima, K., Hashimoto, M., Kimura, K. (1994). Characteristics of high–speed tool steel as material of work roll in hot rolling. Vol. 2. 6th Int. rolling conf. proc. Dusseldorf, 59–64.
  14. Sonoda, A., Kashiwagi, S., Hamada, S., Noguchi, H. (2008). Quantitative Evaluation of Heat Crack Initiation Condition Under Thermal Shock. Journal of Solid Mechanics and Materials Engineering, 2 (1), 128–136. doi: 10.1299/jmmp.2.128
  15. Sonoda, A., Kashiwagi, S., Noguchi, H. (2009). Analysis of Small Spalling Mechanism on Hot Rolling Mill Roll Surface. Memoirs of the Faculty of Engineering, Kyushu University, 69 (1).
  16. Dong, Q., Cao, J., Li, H., Zhou, Y., Yan, T., Wang, W. (2014). Analysis of Spalling in Roughing Mill Backup Rolls of Wide and Thin Strip Hot Rolling Process. Steel Research International, 86 (2), 129–136. doi: 10.1002/srin.201300476
  17. Matvienko, V. N. (2006). Povyshenie rabotosposobnosti sheek i galteley valkov prokatnyh stanov naplavkoy sloya metalla. Zakhyst metalurhiyinykh mashyn vid polomok, 9, 153–157.
  18. Gasiak, G., Rabak, G. (2006). Fatigue life of constructional materials under bending with torsion for crack propagation. Mechanical fatigue of metals: Proceeding of the 13-th Int. Colloquim. Ternopil, TSTU, 270–276.
  19. Son, I. S., Cho, J.-R., Yoon, H. (2008). Effects of moving mass on the dynamic behavior of cantilever beams with double cracks. Int. J. of Precision engineering and manufacturing, 9 (3), 33–39.
  20. Murakami, Y. (2002). Metal fatigue: effects of small defects and nonmetallic inclusions. Oxford: Elsevier, 384.
  21. Desimone, H., Gonzalez, J. K., Beretta, S. (2004). A model for influence of inclusions in high cycle contact fatigue. Tenaris.
  22. Broek, D. (1974). Elementary engineering fracture mechanics. Leyden: Noordhoff Int. Publ., 408.
  23. Jodejko-Pietruczuk, A., Nowakowski, T., Werbińska-Wojciechowska, S. (2013). Block inspection policy model with imperfect inspections for multi-unit systems. RT&A, 8 (3 (30)), 75–86.
  24. Belodedenko, S. V., Goryanoy, V. M., Buh, I., Yatsuba, A. V. (2014). Prognozirovanie rabotosposobnosti listoprokatnyh valkov. Problemy prochnosti, 5, 89–95.
  25. Datsyshyn, O. P., Panasyuk, V. V. (2017). Methods for the Evaluation of the Contact Durability of Elements of the Tribojoints (A Survey). Materials Science, 52 (4), 447–459. doi: 10.1007/s11003-017-9977-x

Downloads

Published

2018-02-05

How to Cite

Belodedenko, S., Grechany, A., & Yatsuba, A. (2018). Prediction of operability of the plate rolling rolls based on the mixed fracture mechanism. Eastern-European Journal of Enterprise Technologies, 1(7 (91), 4–11. https://doi.org/10.15587/1729-4061.2018.122818

Issue

Section

Applied mechanics