Development of a self­diagnostics subsystem of the information­measuring system using anfis controllers

Authors

  • Ihor Zhukovyts’kyy Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010, Ukraine https://orcid.org/0000-0002-3491-5976
  • Ihor Kliushnyk Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010, Ukraine https://orcid.org/0000-0001-9939-0755

DOI:

https://doi.org/10.15587/1729-4061.2018.123591

Keywords:

hydraulic transmission of diesel locomotive, information-measuring system, parameter measurement sensors, neural-fuzzy controller

Abstract

A hybrid self-diagnostic system was designed to evaluate correctness of functioning of sensors of the information-measuring system of testing hydraulic transmissions of diesel locomotives of UHP 750 type. The system features the possibility of checking certain four parameters in steady-state operation conditions using known mathematical dependencies. For the other 14 parameters (for which mathematical dependencies were not studied and which have a high complexity of calculations), 14 neural-fuzzy ANFIS networks were developed. Self-diagnostic algorithms using ANFIS controllers were elaborated. The algorithms provide prediction of individual system parameters with the help of ANFIS controllers and a further comparison of the predicted parameters with the measured parameters. The ANFIS controller structure with the proposed Sugeno rule set was constructed and its efficiency was shown.

Network training and test of the diagnostic subsystem were performed using the data sets obtained in a series of tests of hydraulic transmissions conducted at Promteplovoz diesel locomotive repair plant. The test results have shown that application of the proposed procedure ensures obtaining of correct result of the self-diagnostic subsystem operation.

Author Biographies

Ihor Zhukovyts’kyy, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010

Doctor of Technical Sciences, Professor, Head of Department

Department of electronic computing machines

Ihor Kliushnyk, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010

Assistant

Department of electronic computing machines

References

  1. Ovchinnikov, V. M., Halimanchik, V. A., Nevzorov, V. V. (2006). Gidravlicheskie peredachi teplovozov. Gomel', 155.
  2. Zhukovytskyy, I. V., Kliushnyk, I. A., Ochkasov, O. B., Korenyuk, R. O. (2015). Information-measuring test system of diesel locomotive hydraulic transmissions. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 5 (59), 53–65. doi: 10.15802/stp2015/53159
  3. Bodnar, B. Ye., Ochkasov, O. B., Koreniuk, R. O. Kliushnyk, I. A. (2017). Vykorystannia metodu vilnoho vybihu pry vyznachenni mekhanichnykh vtrat v hidravlichnykh peredachakh pry stendovykh vyprobuvanniakh. Problemy i perspektivy razvitiya zheleznodorozhnogo transporta: 77 Mezhdunarodnaya nauchno-prakticheskaya konferenciya. Dnipro, 16–17.
  4. Gaj, P., Jasperneite, J., Felser, M. (2013). Computer Communication Within Industrial Distributed Environment – a Survey. IEEE Transactions on Industrial Informatics, 9 (1), 182–189. doi: 10.1109/tii.2012.2209668
  5. Lee, J., Ardakani, H. D., Yang, S., Bagheri, B. (2015). Industrial Big Data Analytics and Cyber-physical Systems for Future Maintenance & Service Innovation. Procedia CIRP, 38, 3–7. doi: 10.1016/j.procir.2015.08.026
  6. Liu, K., Ma, Q., Gong, W., Miao, X., Liu, Y. (2014). Self-Diagnosis for Detecting System Failures in Large-Scale Wireless Sensor Networks. IEEE Transactions on Wireless Communications, 13 (10), 5535–5545. doi: 10.1109/twc.2014.2336653
  7. Sun, W., Jian, D., Yuan, Y., Yuan, Y. (2016). Fault Simulation of Electro-Hydraulic Servo System for Fault Self-Healing Based on Immune Principle. 2016 9th International Symposium on Computational Intelligence and Design (ISCID). doi: 10.1109/iscid.2016.2040
  8. Osipov, A. V., Kruchek, V. A., Kurilkin, D. N. (2012). Rabota gidrotransformatora gidroperedachi promyshlennogo lokomotiva v perekhodnyh processah i neustanovivshihsya rezhimah raboty. Izvestiya Peterburgskogo universiteta putey soobshcheniya, 2 (31), 142–148.
  9. Kondrat'eva, S. D., Semenenko, M. G. (2016). Modelirovanie slozhnyh sistem: sovremennye matematicheskie metody i prakticheskie aspekty. Fundamental'nye issledovaniya, 5, 43–46.
  10. Deyneko, A. A., Deyneko, Zh. V., Turuta, A. P., Bodyanskiy, E. V. (2014). Adaptivniy metod kombinirovannogo obucheniya-samoobucheniya neyro-fazzi system. Systemni tekhnolohiyi, 2, 145–153.
  11. Perova, I. G., Bodyanskiy, E. V. (2015). Neyro-fazzi sistema dlya zadach obrabotki medicinskih dannyh v situaciyah mnozhestva diagnozov. Bionika intellekta, 2, 86–89.
  12. Lei, Y., He, Z., Zi, Y., Hu, Q. (2007). Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs. Mechanical Systems and Signal Processing, 21 (5), 2280–2294. doi: 10.1016/j.ymssp.2006.11.003
  13. Zhang, J., Li, X., He, Z. (2010). Fault classification technique for power distribution network using adaptive network based fuzzy inference system. Proceedings of the CSEE, 30 (25), 87–93.
  14. Pakhomova, V. M., Dmitriyev, S. Yu. (2013). Rozrobka pidsystemy operatyvnoho prohnozuvannia prostoiv prybuvaiuchykh poizdiv na osnovi ANFIS-systemy. Informatsiyno-keruiuchi systemy na zaliznychnomu transport, 4, 46–55.
  15. Jang, J.-S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23 (3), 665–685. doi: 10.1109/21.256541
  16. Shmatov, G. P., Fomina, E. E. (2015). Matlab v primerah i zadachah. Tver', 172.
  17. Zhukovytskyy, I. V., Kliushnyk, I. A. (2017). Choice of the optimal parameters of measuring the shaft rotation frequency of the hydraulic transmission of the locomotive using microcontroller. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2 (68), 36–45. doi: 10.15802/stp2017/99945
  18. Kliushnyk, I. A., Koreniuk, R. O., Ochkasov, O. B. (2016). Pat. No. 116193 UA. Dvotypnyi tsyfrovyi mikroprotsesornyi takhometr. MPK G 01P 3/48. No. 12057; declareted: 28.11.2016; published: 10.05.2017, Bul. No. 9, 2.

Downloads

Published

2018-02-14

How to Cite

Zhukovyts’kyy, I., & Kliushnyk, I. (2018). Development of a self­diagnostics subsystem of the information­measuring system using anfis controllers. Eastern-European Journal of Enterprise Technologies, 1(9 (91), 11–19. https://doi.org/10.15587/1729-4061.2018.123591

Issue

Section

Information and controlling system