Developing the method of rational trucking routing based on the modified ant algorithm

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.123862

Keywords:

rational route, trucking, modified ant algorithm, qualitative state of roads, throughput of route sections

Abstract

The method of rational routing based on the modified ant algorithm with introduction of a quality function that characterizes the qualitative state of roads was proposed. Comprehensive assessment of potential routes takes into account practical throughput, actual state of the route sections and the vehicle traffic intensity.

The function of quality of the transportation process was formed. Formalization of the roadbed condition on selected sections of the route was proposed to be carried out with the use of a fuzzy set apparatus for describing the membership function. The roadway condition was estimated on the basis of empirical data and was reduced to the appropriate coefficients that characterize unsatisfactory, partially satisfactory and satisfactory road conditions. Description of practical throughput in individual sections of the designed routes was formalized. The probability of occurrence of vehicles of diverse types in the travel line was taken into consideration when determining theoretical throughput of road sections with a subsequent reducing to corresponding expert coefficients.

Introduction of additional parameters through the quality function into the model of ant algorithm makes it possible to improve its efficiency and expand possibilities for taking into account additional conditions of transportation, such as the road relief, existing service infrastructure, appearance of emergency road situations, climatic conditions, etc. The proposed approach may be useful in solving the synthesis problem since it will enable prompt taking into consideration complex and varying actual conditions of the transportation process.

Comparison of effectiveness of the classical and modified ant algorithm was carried out on the example of transportation routing from the point of departure to the point of destination on an example of a road network between Odesa and Dnipro. Implementation of the classical and modified algorithms proved effectiveness of the proposed approach and made it possible to determine the route that avoids road sections with unsatisfactory road conditions.

The proposed modified algorithm makes it possible to focus on not only the distance indicators but also on qualitative characteristics of the road. Calculations using the modified algorithm in the MATLAB programming environment have allowed us to determine the most rational route.

The results obtained in the study can later be used in the decision support systems for management in the process of rational routing. The proposed methodological approach can be useful in solving the synthesis problem since it will enable consideration of complicated and changing conditions of practical realization, in particular, in a real-time mode.

Author Biographies

Nataliya Khalipova, University of Customs and Finance Volodymyra Vernadskoho str., 2/4, Dnipro, Ukraine, 49000

PhD, Associate Professor

Department of Transport systems and technologies

 

Anatoliy Pasichnyk, University of Customs and Finance Volodymyra Vernadskoho str., 2/4, Dnipro, Ukraine, 49000

Doctor of Physical and Mathematical Sciences, Professor

Department of Transport systems and technologies

Irina Lesnikova, University of Customs and Finance Volodymyra Vernadskoho str., 2/4, Dnipro, Ukraine, 49000

PhD, Associate Professor

Department of Transport systems and technologies

Albina Kuzmenko, University of Customs and Finance Volodymyra Vernadskoho str., 2/4, Dnipro, Ukraine, 49000

PhD, Associate Professor

Department of Transport systems and technologies

Mariia Kokina, Ltd “Syayvo” Polovetska str., 5, Dnipro, Ukraine, 49000

Engineer

Vyacheslav Kutirev, Donetsk customs of DFS of Ukraine Lunina ave., 1, Mariupol, Ukraine, 87510

Head of sector of management of customs control

Yevgenii Kushchenko, Odessa Port Plant Zavodska str., 3, Yuzhny, Ukraine, 67550

Engineer

References

  1. Mirotin, L. B. (Ed.) (2013). Transportnaya logistika. Moscow: Izdatel'stvo «Ekzamen», 512.
  2. Bauersoks, D. Dzh., Kloss, D. Dzh. (2008). Logistika: integrirovannaya cep' postavok. Moscow: ZAO «Olim-Biznes», 608.
  3. Lukinskiy, V. S., Lukinskiy, V. V., Plastunyak, I. A., Pleteneva, N. G. (2005). Transportirovka v logistike. Sankt-Peterburg: SPbGIUE, 139.
  4. Gorev, A. E. (2008). Gruzovye avtomobil'nye perevozki. Moscow: ID Akademiya, 288.
  5. Lesnikova, I. Yu., Khalipova, N. V. (2015). Optymizatsiya pasazhyrskykh perevezen u vuzlakh mehapolisiv. Systemy ta tekhnolohiyi, 2, 55–68
  6. Nahornyi, Ye. V., Naumov, V. S., Omelchenko, T. O., Litvinova, Ya. V. (2013). Analysis of theoretical approaches to improve the logistics management in transport nodes. Eastern-European Journal of Enterprise Technologies, 4 (4 (64)), 61–64. Available at: http://journals.uran.ua/eejet/article/view/16343/13854
  7. Nagorniy, E. V., Muzylev, D. A., Cherepaha, A. S. (2012). Perfection of the transportation technology for the consumer goods in the cities with the use of the logistic principles. Eastern-European Journal of Enterprise Technologies, 3 (2 (57)), 44–46. Available at: http://journals.uran.ua/eejet/article/view/3981/3648
  8. Kostysheva, Ya. V. (2013). Effektivnost' primeneniya programmnyh obespecheniy v oblasti transportnoy logistiki. Ekonomiks, 1, 47–54.
  9. Nahornyi, Ye. V., Naumov, V. S. (2012). Model lohistychnoi systemy dostavky vantazhiv mizh Ukrainoiu ta Bilorussiu. Zbirnyk naukovykh prats Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana. Transportni systemy ta tekhnolohiyi perevezen, 4, 70–74.
  10. Kichkina, O. I. (2015). Vybir optymalnoi skhemy dostavky vantazhu v lohistychnykh systemakh. Visnyk Skhidnoukrainskoho natsionalnoho universytetu imeni Volodymyra Dalia, 2, 9–11.
  11. Bondariev, S. I. (2012). Perfection of timing methodology of loads delivery at international autotransportations. Technology audit and production reserves, 5 (1 (7)), 49–50. doi: 10.15587/2312-8372.2012.4809
  12. Savchenko, L. A. (2013). Alhorytm proektuvannia systemy dostavky vantazhiv v umovakh suchasnykh tendentsiyi transportnoho zabezpechennia lohistyky. Zbirnyk naukovykh prats Vinnytskoho natsionalnoho ahrarnoho universytetu. Seriya: Tekhnichni nauky, 2, 39–43.
  13. Khalipova, N. V., Chernenko, A. O., Lesnikova, I. Yu. (2016). Traffic load analysis based on traffic flows modeling. Transport systems and transportation technologies. Collection of scientific works of dnepropetrovsk national university of railway transport named after academician Lazaryan, 12, 90–98. doi: 10.15802/tstt2016/85890
  14. Lei, K., Zhu, X., Hou, J., Huang, W. (2014). Decision of Multimodal Transportation Scheme Based on Swarm Intelligence. Mathematical Problems in Engineering, 2014, 1–10. doi: 10.1155/2014/932832
  15. Ramadhani, T., Hertono, G. F., Handari, B. D. (2017). An Ant Colony Optimization algorithm for solving the fixed destination multi-depot multiple traveling salesman problem with non-random parameters. AIP Conference Proceedings, 1862. doi: 10.1063/1.4991227
  16. Xu, Q., Mao, J., Jin, Z. (2012). Simulated Annealing-Based Ant Colony Algorithm for Tugboat Scheduling Optimization. Mathematical Problems in Engineering, 2012, 1–22. doi: 10.1155/2012/246978
  17. Ashouri, M., Yousefikhoshbakht, M. (2017). A Combination of Meta-heuristic and Heuristic Algorithms for the VRP, OVRP and VRP with Simultaneous Pickup and Delivery. Brain: Broad Research in Artificial Intelligence and Neuroscience, 8 (2), 81–95.
  18. Hassan, M. R., Islam, M. M., Murase, K. (2010). A New Local Search Based Ant Colony Optimization Algorithm for Solving Combinatorial Optimization Problems. IEICE Transactions on Information and Systems, E93-D (5), 1127–1136. doi: 10.1587/transinf.e93.d.1127
  19. Kalinowski, K., Krenczyk, D., Paprocka, I., Kempa, W. M., Grabowik, C. (2017). Ant colony optimisation for scheduling of flexible job shop with multi-resources requirements. MATEC Web of Conferences, 112, 06018. doi: 10.1051/matecconf/201711206018
  20. Santos, L. P. dos, Vieira, G. E., Leite, H. V. dos R., Arns Steiner, M. T. (2012). Ant Colony Optimisation for Backward Production Scheduling. Advances in Artificial Intelligence, 2012, 1–12. doi: 10.1155/2012/312132
  21. Wang, Y., Lu, J. (2015). Optimization of China Crude Oil Transportation Network with Genetic Ant Colony Algorithm. Information, 6 (4), 467–480. doi: 10.3390/info6030467
  22. Kuvatov, V. I. (2012). Vybor racional'nyh znacheniy skorosti i distancii mezhdu avtomobilyami v plotnom transportnom potoke. Transport: nauka, tekhnika, upravlenie, 11, 23–26.
  23. Kuvatov, V. I., Koz'movskiy, D. V. (2012). Ocenka teoreticheskoy propusknoy sposobnosti uchastka avtomobil'noy dorogi v usloviyah raznorodnogo potoka transportnyh sredstv. Mat-ly Mezhdunar. nauchn. konf. «Sovremennyy transport: infrastruktura, innovacii, intellektual'nye sistemy». Sankt-Peterburg, 140–147.
  24. Norenkov, I. P. Arutyunyan, N. M. (2007) Evolyucionnye metody v zadachah vybora proektnyh resheniy. Elektronniy zhurnal «Nauka i obrazovanie», 9.
  25. Avtrostrada. Aktual'noe sostoyanie dorog. Available at: http://autostrada.info/ua
  26. Dorigo, M., Stutzle, T. (2014). Ant Colony Optimization. Bradford Book, 319.
  27. ODM 218.2.020-2012. Otraslevoy dorozhnyy metodicheskiy dokument. Metodicheskie rekomendacii po ocenke propusknoy sposobnosti avtomobil'nyh dorog (2012). Moscow: Izd-vo Federal'noe dorozhnoe agentstvo.
  28. Stützle, T., López-Ibáñez, M., Pellegrini, P., Maur, M., de Oca, M., Birattari, M., Maur, M., Dorigo, M. (2010). Parameter Adaptation in Ant Colony Optimization. Technical Report No. TR/IRIDIA/2010-002. IRIDIA, Université Libre de Bruxelles, 26.

Downloads

Published

2018-02-19

How to Cite

Khalipova, N., Pasichnyk, A., Lesnikova, I., Kuzmenko, A., Kokina, M., Kutirev, V., & Kushchenko, Y. (2018). Developing the method of rational trucking routing based on the modified ant algorithm. Eastern-European Journal of Enterprise Technologies, 1(3 (91), 68–76. https://doi.org/10.15587/1729-4061.2018.123862

Issue

Section

Control processes