The thermal state of the ad motor at the reduce rotor speed

Authors

  • Михайло Ігорович Коцур Zaporozhzhie National Technical University Zhukovskogo 64, Zaporozhzhye, Ukraine, 69063, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.12421

Keywords:

AD motor, thermal state, regulation, ampacity, slip, rotor, loss, current load, energy, transformation

Abstract

Changing in the conditions of cooling in recursive short-time modes in wide range of rotor speed occurs under the exploitation of the crane electric drive based on AD motors. The aim of this article is to estimate the thermal state of the AD motor at low rotor speed, as well as comparative analysis execution of the AD motor ampacity calculated by the average loss of heat and equivalent thermal circuit (ETC) methods. Electrothermal model to consider peculiarities of electromagnetic energy transformation in thermal energy, heat transferring and heat interchanging processes was used for calculation and analysis of the thermal state of the AD motor by ETC method. Conducting evaluation of the thermal state of the AD motor with phase rotor by regulation of additional resistance under continuous (S1) and recursive short-time (S3) modes showed an increasing temperature in the range of large slip of the AD motor at the end investigation. Hence, the limiting values of current load of the AD motor were defined by ETC and average loss of heat methods. It was proved, that the definition of the AD motor ampacity by average loss of heat method led to underutilization of AD motor power

Author Biography

Михайло Ігорович Коцур, Zaporozhzhie National Technical University Zhukovskogo 64, Zaporozhzhye, Ukraine, 69063

PhD

Department of Electric and electronic apparatus

References

  1. Андриенко П. Д. Анализ термической стойкости изоляции асинхронного двигателя с фазным ротором при разных способах управления [Текст] / П. Д. Андриенко, И. М. Коцур, М. И. Коцур // Електротехнічні та комп’ютерні системи.- К.: Техніка, 2011 – №3(79). – С. 420 – 422.
  2. Бурковский, А.Н. Определение допустимого тока статора закрытого асинхронного двигателя в кратковременных режимах с начальным нагревом [Текст] / А.Н. Бурковский, О.А. Рыбалко, Л.К. Шихова // Взрывозащищенное электрооборудование: Сб. науч. тр. – Донецк: ООО „Юго-Восток Лтд”, 2005. – С. 193-197.
  3. Коцур, М. И. Оценка ресурса системы изоляции управляемого асинхронного двигателя с фазным ротором в подсинхронном диапазоне частоты вращения ротора [Текст] / М. И. Коцур, П. Д. Андриенко, И. М. Коцур // Восточно-Европейский журнал передовых технологий. –2011. – №5/8(53). – С. 41-45.
  4. Коцур М. И. Особенности режимов работы модифицированной системы импульсного регулирования асинхронного двигателя с фазным ротором [Текст] / М. И. Коцур, П. Д. Андриенко, И. М. Коцур, // Електромеханічні і енергозберігаючі системи. – Кременчук: КрНУ, 2012., – №3(19) – С. 163–165.
  5. Коцур М. И. Повышение энергоэффективности схемы импульсного регулирования в цепи выпрямленного тока ротора [Текст] / М.И. Коцур // Електромеханічні і енергозберігаючі системи. – Кременчук: КрНУ, 2011., – №2(14). – С. 86-89.
  6. Коцур М. И. Особенности выбора балластного сопротивления для схемы импульсного регулирования в цепи выпрямленного тока ротора [Текст] / М.И. Коцур // Електротехнічні та комп’ютерні системи.- К.: Техніка, 2011, – №4(80). – С. 56-61.
  7. Сипайлов, Г.А. Тепловые гидравлические и аэродинамические расчеты в электрических машинах [Текст] / Г.А. Сипайлов, Д.И. Санников, В.А. Жадан - М.: Высш. Шк., 1989. - 240 c.
  8. Souto, О.С.N. Induction motors thermal behaviour and life expectancy under non-idea supply conditions [Text] / O. C. N. Souto, J.C. de Oliveira, L.M. Neto // Proceedings of 9lh IEEE Conference on Harmonics and Quality of Power (ICHQP), Orlando (USA), October 2000 — PP. 899-904.
  9. Hameyer K. Thermal computation of electrical machines [Text] / K. Hameyer, U. Pahner, R. Belmans, H. Hedia // 3rd international workshop on electric & Magnetic fields, Liиge, Belgium, May 6-9, 1996; pp. 61-66.
  10. Busschots F., Renier B., Belmans R. Direct torque control: application to crane drives [Text] / F. Busschots, B. Renier, R. Belmans // 7th European conference on power electronics and applications EPE, Trondheim, Norway, September 8-10, 1997; pp. 4579-4584.
  11. Driesen J. Finite element modelling of thermal contact resistances and insulation layers in electrical machines [Text] / J. Driesen, R. Belmans, K. Hameyer// IEEE International Electric Machines and Drives Conference (IEMDC'99), Seattle, Washington, USA, May 9-12, 1999; pp. 222-224.
  12. Driesen J. Coupled magneto-thermal simulation of thermally anisotropic electrical machines [Text] / J. Driesen, R. Belmans, K. Hameyer // IEEE International Electric Machines and Drives Conference (IEMDC'99), Seattle, Washington, USA, May 9-12, 1999; pp. 469-471.
  13. Abreu, J.P. Induction motor thermal aging caused by voltage distortion and im¬balance: loss of useful life and its estimated cost [Text] / J.P Abreu, A.E. Emanuel // IEEE Transactions on Industry Applications. — 2002. — №1. — P. 12-20.
  14. Andrienko P. D., Kotsur M. I. , Kotsur I. M. (2011). Thermal stability asynchronous motor with phase rotor isolation analysis for different type of control drives system. Electrotechnic and computer system, №3(79), 420 – 422.
  15. Burkovskiy A. N. (2005). Opredelenie dopustimogo toka statora zakrytogo asinhronogo dvigatelya v kratkovremennyh rezymah s nachal'nym nagrevom. OOO "Ŭgo-Vostok Ltd", 193 – 197.
  16. Kotsur M. I., Andrienko P. D., Kotsur I. M. (2011). Estimation of isolation system resource drive's asynchronous motor with phase rotor in sub synchronous frequency rotation. Eastern – European Journal of Enterprise Technologies, №5/8(53), 41-45.
  17. Kotsur M.I., Andrienko P. D., Kotsur I. M. (2012). Operation modes features of modificate pulse control system of asynchronous motor with phase rotor. Electromechanical and energy saving systems,№ 3 (19), 163–165.
  18. Kotsur M. I. (2011). Improving energy efficiency schemes in the pulse control circuit of rectified rotor current. Electromechanical and energy saving systems, № 2 (14), 86–89.
  19. Kotsur M. I. (2011). Ballast resistance for impulsive adjusting scheme in chain of straightened current of the rotor choice peculiarities. Electrotechnic and computer system, №4(80), 56-61.
  20. Sipajlov G.A. (1989). Teplovye gidravlicheskie i aerodinamicheskie paschety v elektricheskih mashynah. Vusshaya shkola.
  21. Souto, О.С.N., Oliveira J. C., Neto L. M. (2000). Induction motors thermal be-
  22. haviour and life expectancy under non-idea supply conditions. Proceedings of 9lh
  23. IEEE Conference on Harmonics and Quality of Power (ICHQP), 899-904.
  24. Hameyer K. Pahner U, Belmans R, Hedia H. (1996). Thermal computation of electrical machines. 3rd international workshop on electric & Magnetic fields, 61-66.
  25. Busschots F., Renier B., Belmans R. (1997). Direct torque control: application to crane drives. 7th European conference on power electronics and applications EPE, 4579-4584.
  26. Driesen J., Belmans, R. Hameyer K. (1999). Finite element modelling of thermal contact resistances and insulation layers in electrical machines. IEEE International Electric Machines and Drives Conference, 222-224.
  27. Driesen J, Belmans, R. Hameyer K. (1999). Coupled magneto-thermal simulation of thermally anisotropic electrical machines. IEEE International Electric Machines and Drives Conference (IEMDC'99), 469-471.
  28. Abreu J.P, Emanuel A. E. (2002). Induction motor thermal aging caused by voltage distortion and imbalance: loss of useful life and its estimated cost. IEEE Transactions on Industry Applications, 12-20.

Published

2013-04-25

How to Cite

Коцур, М. І. (2013). The thermal state of the ad motor at the reduce rotor speed. Eastern-European Journal of Enterprise Technologies, 2(8(62), 8–10. https://doi.org/10.15587/1729-4061.2013.12421

Issue

Section

Energy saving in transport technologies