Analysis of statistical methods for stable combinations determination of keywords identification

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.126009

Keywords:

stable word combination, NLP, Information Retrieval, SEO, Web-mining, statistical linguistic analysis, quantitative linguistics, heading

Abstract

The study has solved the task of making comparative analysis and choosing an optimal statistical method to determine stable word combinations while identifying keywords to process English-language and Ukrainian-language Web-resources. The effectiveness of the method directly proportionally depends on the quality of linguistic analysis, of Ukrainian and English texts, respectively, based on the technology of Web Mining and NLP. A decomposition of methods of linguistic analysis was performed to determine the impact on the quality of forming stable word combinations as keywords. The features of the method are the adaptation of the morphological and syntactic analyses of lexical units to the peculiarities of Ukrainian-language words/texts.

To determine stable word combinations effectively, it is essential to exclude functional words (stops or references), pronouns, numerals and verbs because they are not related to the subject and content of a published work. A set of stable word combinations as keywords is determined by qualitative morphological and syntactic analyses of relevant texts. The set of the identified stable word combinations is used further to compare and determine the degree of the text relevance to a specific topic or user request. The internal “dynamics” of forming a set of stable word combinations as keywords was investigated in the study depending on the statistical method applied to the texts. The obtained results have been verified.

The study has produced results of the experimental testing of the proposed content-monitoring method for determining stable word combinations to identify keywords in the processing of English-language and Ukrainian-language web-resources of the technical content based on Web Mining technology. It has been determined that the authors of published works often identify the keywords that are far from being considered. It has also been proven that the quality of the result is influenced by the quality of linguistic analysis of texts and subsequent filtering. Further experimental research requires approbation of the proposed method for determining keywords for other categories of texts – scientific, humanitarian, belletristic, journalistic, etc.

Author Biographies

Vasyl Lytvyn, Lviv Polytechnic National University S. Bandery str., 12, Lvіv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of Information Systems and Networks

Victoria Vysotska, Lviv Polytechnic National University S. Bandery str., 12, Lvіv, Ukraine, 79013

PhD, Associate Professor

Department of Information Systems and Networks

Dmytro Uhryn, Chernivtsi Faculty of National Technical University «Kharkiv Polytechnic Institute» Holovna str., 203A, Chernivtsi, Ukraine, 58000

PhD, Associate Professor

Department of Information Systems

Mariya Hrendus, Lviv Polytechnic National University S. Bandery str., 12, Lvіv, Ukraine, 79013

Assistant

Department of Information Systems and Networks

Oleh Naum, Drohobych Ivan Franko State Pedagogical University I. Franko str., 24, Drohobych, Ukraine, 82100

Assistant

Department of Information Systems and Technologies

References

  1. Lytvyn, V., Vysotska, V., Pukach, P., Bobyk, I., Uhryn, D. (2017). Development of a method for the recognition of author’s style in the Ukrainian language texts based on linguometry, stylemetry and glottochronology. Eastern-European Journal of Enterprise Technologies, 4 (2 (88)), 10–19. doi: 10.15587/1729-4061.2017.107512
  2. Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D. (2017). Development of a method for determining the keywords in the slavic language texts based on the technology of web mining. Eastern-European Journal of Enterprise Technologies, 2 (2 (86)), 14–23. doi: 10.15587/1729-4061.2017.98750
  3. Lytvyn, V., Pukach, P., Bobyk, І., Vysotska, V. (2016). The method of formation of the status of personality understanding based on the content analysis. Eastern-European Journal of Enterprise Technologies, 5 (2 (83)), 4–12. doi: 10.15587/1729-4061.2016.77174
  4. Mobasher, B. (2007). Data mining for web personalization. The adaptive web, 90–135. doi: 10.1007/978-3-540-72079-9_3
  5. Dinucă, C. E., Ciobanu, D. (2012). Web Content Mining. Annals of the University of Petroşani. Economics, 12 (1), 85–92.
  6. Xu, G., Zhang, Y., Li, L. (2010). Web Content Mining. Web Mining and Social Networking, 71–87. doi: 10.1007/978-1-4419-7735-9_4
  7. Khomytska, I., Teslyuk, V. (2017). The Method of Statistical Analysis of the Scientific, Colloquial, Belles-Lettres and Newspaper Styles on the Phonological Level. Advances in Intelligent Systems and Computing, 512, 149–163. doi: 10.1007/978-3-319-45991-2_10
  8. Khomytska, I., Teslyuk, V. (2016). Specifics of phonostatistical structure of the scientific style in English style system. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: 10.1109/stc-csit.2016.7589887
  9. Bol'shakova, E., Klyshinskiy, E., Lande, D., Noskov, A., Peskova, O., Yagunova, E. (2011). Avtomaticheskaya obrabotka tekstov na estestvennom yazyke i komp'yuternaya lingvistika. Moscow: MIEM, 272.
  10. Anisimov, A., Marchenko, A. (2002). Sistema obrabotki tekstov na estestvennom yazyke. Iskusstvennyy intellekt, 4, 157–163.
  11. Perebyinis, V. (2000). Matematychna linhvistyka. Ukrainska mova. Kyiv, 287–302.
  12. Buk, S. (2008). Osnovy statystychnoi lingvistyky. Lviv, 124.
  13. Perebyinis, V. (2013). Statystychni metody dlia linhvistiv. Vinnytsia, 176.
  14. Braslavskiy P. I. Intellektual'nye informacionnye sistemy. Available at: http://www.kansas.ru/ai2006/
  15. Lande, D., Zhyhalo, V. (2008). Pidkhid do rishennia problem poshuku dvomovnoho plahiatu. Problemy informatyzatsii ta upravlinnia, 2 (24), 125–129.
  16. Varfolomeev, A. (2000). Psihosemantika slova i lingvostatistika teksta. Kaliningrad, 37.
  17. Sushko, S., Fomychova, L., Barsukov, Ye. (2010). Chastoty povtoriuvanosti bukv i bihram u vidkrytykh tekstakh ukrainskoiu movoiu. Ukrainian Information Security Research Journal, 12 (3 (48)). doi: 10.18372/2410-7840.12.1968
  18. Kognitivnaya stilometriya: k postanovke problemy. Available at: http://www.manekin.narod.ru/hist/styl.htm
  19. Kocherhan, M. (2005). Vstup do movoznavstva. Kyiv.
  20. Rodionova, E. (2008). Metody atribucii hudozhestvennyh tekstov. Strukturnaya i prikladnaya lingvistika, 7, 118–127.
  21. Meshcheryakov R. V., Vasyukov N. S. Modeli opredeleniya avtorstva teksta. Available at: http://db.biysk.secna.ru/conference/conference.conference.doc_download?id_thesis_dl=427
  22. Morozov N. A. Lingvisticheskie spektry. Available at: http://www.textology.ru/library/book.aspx?bookId=1&textId=3
  23. Victana. Available at: http://victana.lviv.ua/index.php/kliuchovi-slova
  24. Kanishcheva, O., Vysotska, V., Chyrun, L., Gozhyj, A. (2017). Method of Integration and Content Management of the Information Resources Network. Advances in Intelligent Systems and Computing, 689, 204–216. doi: 10.1007/978-3-319-70581-1_14
  25. Su, J., Vysotska, V., Sachenko, A., Lytvyn, V., Burov, Y. (2017). Information resources processing using linguistic analysis of textual content. 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: 10.1109/idaacs.2017.8095038
  26. Lytvyn, V., Vysotska, V., Veres, O., Rishnyak, I., Rishnyak, H. (2017). The risk management modelling in multi project environment. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: 10.1109/stc-csit.2017.8098730
  27. Korobchinsky, M., Chyrun, L., Chyrun, L., Vysotska, V. (2017). Peculiarities of content forming and analysis in internet newspaper covering music news. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: 10.1109/stc-csit.2017.8098735
  28. Naum, O., Chyrun, L., Vysotska, V., Kanishcheva, O. (2017). Intellectual system design for content formation. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: 10.1109/stc-csit.2017.8098753
  29. Lytvyn, V., Vysotska, V., Burov, Y., Veres, O., Rishnyak, I. (2017). The Contextual Search Method Based on Domain Thesaurus. Advances in Intelligent Systems and Computing, 689, 310–319. doi: 10.1007/978-3-319-70581-1_22
  30. Marchenko, O. (2006). Modeliuvannia semantychnoho kontekstu pry analizi tekstiv na pryrodniy movi. Visnyk Kyivskoho universytetu, 3, 230–235.
  31. Jivani, A. G. (2011). A Comparative Study of Stemming Algorithms. Int. J. Comp. Tech. Appl., 2 (6), 1930–1938.
  32. Mishler, A., Crabb, E. S., Paletz, S., Hefright, B., Golonka, E. (2015). Using Structural Topic Modeling to Detect Events and Cluster Twitter Users in the Ukrainian Crisis. Communications in Computer and Information Science, 528, 639–644. doi: 10.1007/978-3-319-21380-4_108
  33. Rodionova, E. (2008). Metody atribucii hudozhestvennyh tekstov. Strukturnaya i prikladnaya lingvistika, 7, 118–127.
  34. Bubleinyk, L. (2000). Osoblyvosti khudozhnoho movlennia. Lutsk, 179.
  35. Kowalska, K., Cai, D., Wade, S. (2012). Sentiment Analysis of Polish Texts. International Journal of Computer and Communication Engineering, 1 (1), 39–42. doi: 10.7763/ijcce.2012.v1.12
  36. Kotsyba, N. (2009). The current state of work on the Polish-Ukrainian Parallel Corpus (PolUKR). Organization and Development of Digital Lexical Resources, 55–60.
  37. Machinese Phrase Tagger. Available at: http://www.connexor.com
  38. VISL. Available at: http://visl.sdu.dk
  39. Lytvyn, V., Vysotska, V., Veres, O., Rishnyak, I., Rishnyak, H. (2017). Classification Methods of Text Documents Using Ontology Based Approach. Advances in Intelligent Systems and Computing, 512, 229–240. doi: 10.1007/978-3-319-45991-2_15
  40. Vysotska, V. (2016). Linguistic analysis of textual commercial content for information resources processing. 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET). doi: 10.1109/tcset.2016.7452160
  41. Vysotska, V., Chyrun, L., Chyrun, L. (2016). Information technology of processing information resources in electronic content commerce systems. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: 10.1109/stc-csit.2016.7589909
  42. Vysotska, V., Chyrun, L., Chyrun, L. (2016). The commercial content digest formation and distributional process. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: 10.1109/stc-csit.2016.7589902
  43. Lytvyn, V., Vysotska, V., Veres, O., Rishnyak, I., Rishnyak, H. (2016). Content linguistic analysis methods for textual documents classification. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: 10.1109/stc-csit.2016.7589903
  44. Lytvyn, V., Vysotska, V. (2015). Designing architecture of electronic content commerce system. 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT). doi: 10.1109/stc-csit.2015.7325446
  45. Vysotska, V., Chyrun, L. (2015). Analysis features of information resources processing. 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT). doi: 10.1109/stc-csit.2015.7325448
  46. Vasyl, L., Victoria, V., Dmytro, D., Roman, H., Zoriana, R. (2017). Application of sentence parsing for determining keywords in Ukrainian texts. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: 10.1109/stc-csit.2017.8098797
  47. Maksymiv, O., Rak, T., Peleshko, D. (2017). Video-based Flame Detection using LBP-based Descriptor: Influences of Classifiers Variety on Detection Efficiency. International Journal of Intelligent Systems and Applications, 9 (2), 42–48. doi: 10.5815/ijisa.2017.02.06
  48. Peleshko, D., Rak, T., Izonin, I. (2016). Image Superresolution via Divergence Matrix and Automatic Detection of Crossover. International Journal of Intelligent Systems and Applications, 8 (12), 1–8. doi: 10.5815/ijisa.2016.12.01
  49. Bazylyk, O., Taradaha, P., Nadobko, O., Chyrun, L., Shestakevych, T. (2012). The results of software complex OPTAN use for modeling and optimization of standard engineering processes of printed circuit boards manufacturing. 2012 11th International Conference on "Modern Problems of Radio Engineering, Telecommunications and Computer Science" (TCSET), 107–108.
  50. Bondariev, A., Kiselychnyk, M., Nadobko, O., Nedostup, L., Chyrun, L., Shestakevych, T. (2012). The software complex development for modeling and optimizing of processes of radio-engineering equipment quality providing at the stage of manufacture. TCSET’2012, 159.
  51. Riznyk, V. (2017). Multi-modular Optimum Coding Systems Based on Remarkable Geometric Properties of Space. Advances in Intelligent Systems and Computing, 512, 129–148. doi: 10.1007/978-3-319-45991-2_9
  52. Teslyuk, V., Beregovskyi, V., Denysyuk, P., Teslyuk, T., Lozynskyi, A. (2018). Development and Implementation of the Technical Accident Prevention Subsystem for the Smart Home System. International Journal of Intelligent Systems and Applications, 10 (1), 1–8. doi: 10.5815/ijisa.2018.01.01
  53. Basyuk, T. (2015). The main reasons of attendance falling of internet resource. 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT). doi: 10.1109/stc-csit.2015.7325440
  54. Pasichnyk, V., Shestakevych, T. (2017). The model of data analysis of the psychophysiological survey results. Advances in Intelligent Systems and Computing, 512, 271–281. doi: 10.1007/978-3-319-45991-2_18
  55. Zhezhnych, P., Markiv, O. (2018). Linguistic Comparison Quality Evaluation of Web-Site Content with Tourism Documentation Objects. Advances in Intelligent Systems and Computing, 689, 656–667. doi: 10.1007/978-3-319-70581-1_45
  56. Burov, E. (2014). Complex ontology management using task models. International Journal of Knowledge-Based and Intelligent Engineering Systems, 18 (2), 111–120. doi: 10.3233/kes-140291
  57. Chen, J., Dosyn, D., Lytvyn, V., Sachenko, A. (2016). Smart Data Integration by Goal Driven Ontology Learning. Advances in Big Data, 283–292. doi: 10.1007/978-3-319-47898-2_29
  58. Google – word2vec. Available at: https://github.com/danielfrg/word2vec/blob/master/examples/word2vec.ipynb

Downloads

Published

2018-03-16

How to Cite

Lytvyn, V., Vysotska, V., Uhryn, D., Hrendus, M., & Naum, O. (2018). Analysis of statistical methods for stable combinations determination of keywords identification. Eastern-European Journal of Enterprise Technologies, 2(2 (92), 23–37. https://doi.org/10.15587/1729-4061.2018.126009