Development of a technological approach to the control of turbine casings resource for supercritical steam parameters

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.126042

Keywords:

, turbine casing, pins, tightening, stressed-strained state, long-term strength, resource control

Abstract

A comprehensive model for evaluation of the resource of HPC of the turbine K-800-240-2, which includes calculation of thermal, stressed-strained state, cyclic and static damageability, is presented here. The numerical studies conducted with the use of modern methods of mathematical modeling showed a high impact of forces of pins’ tightening on the stressed-strained state of the casing elements (the stress level increased by 17.7 %). A technological approach to resource control, aimed at a change in pins’ tightening efforts, was proposed. It was established that this method decreases static damageability of basic metal of casings (by 9.7 %), improving its long-term strength. When taking into account tightening forces, the maximum stress intensity decreased by 9.3 %, while the stress level in the flange joint decreased by 11–41 %. These positive moments are accompanied by an increase in individual resource of the casing by 10 %. The developed concept and recommendations have significant importance for ensuring long-term operation of steam turbines with the initial pressure of hot steam at 24 MPa.

Author Biographies

Olga Chernousenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Cogeneration Installations of Thermal and Nuclear Power Plants

Dmitro Rindyuk, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Cogeneration Installations of Thermal and Nuclear Power Plants

Vitaliy Peshko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Assistant

Department of Cogeneration Installations of Thermal and Nuclear Power Plants

Vladyslav Goryazhenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

Department of Cogeneration Installations of Thermal and Nuclear Power Plants

References

  1. Chernousenko, O. Y., Peshko, V. A. (2016). Influence of the operation of the power units of thermal power plants in the maneuvering mode on the aging rate of power equipment. NTU "KhPI" Bulletin: Power and heat engineering processes and equipment, 10 (1182), 6–16. doi: 10.20998/2078-774x.2016.10.01
  2. Nazolin, A. L., Polyakov, V. I. (2013). Nadezhnost' elektroenergetiki. Povyshenie zhivuchesti i prodlenie sroka sluzhby turbogeneratorov metodami rezhimnoy optimizacii. Elektricheskie stancii, 10, 8–12.
  3. Georgievskaya, E. V., Gavrilov, S. N. (2013). Osobennosti prodleniya sroka sluzhby parovyh turbin pri narabotkah, znachitel'no prevyshayushchih parkoviy resurs. Visnyk NTU «KhPI». Seriya: Enerhetychni ta teplotekhnichni protsesy y ustatkuvannia, 12 (986), 107–113.
  4. Wang, R., Wei, J., Hu, D., Shen, X., Fan, J. (2013). Investigation on experimental load spectrum for high and low cycle combined fatigue test. Propulsion and Power Research, 2 (4), 235–242. doi: 10.1016/j.jppr.2013.11.004
  5. Bakic, G., Sijacki-Zeravcic, V., Djukic, M., Rajicic, B., Tasic, M. (2014). Remaining life assessment of a high pressure turbine casing in creep and low cycle service regime. Thermal Science, 18, 127–138. doi: 10.2298/tsci121219179b
  6. Ji, D.-M., Sun, J.-Q., Dui, Y., Ren, J.-X. (2017). The optimization of the start-up scheduling for a 320 MW steam turbine. Energy, 125, 345–355. doi: 10.1016/j.energy.2017.02.139
  7. Kostyuk, A. G. (2014). Selection of labyrinth seals in steam turbines. Thermal Engineering, 62 (1), 14–18. doi: 10.1134/s0040601515010061
  8. Naik, D., Kumar, K. (2017). Contact Pressure Analysis of Steam Turbine Casing. International Research Journal of Engineering and Technology, 04 (06), 909–913.
  9. Zhao, N., Wang, W., Hong, H., Adjei, R. A., Liu, Y. (2016). Mechanical Behavior Study of Steam Turbine Casing Bolts Under In-Service Conditions. Volume 7A: Structures and Dynamics. doi: 10.1115/gt2016-56723
  10. Grishin, N. N., Gubskiy, A. N., Pal'kov, S. A. (2014). Modelirovanie vliyaniya yavleniy polzuchesti na napryazhenno-deformirovannoe sostoyanie vysokonapryazhennyh elementov parovyh turbin. Visnyk NTU «KhPI». Seriya: Enerhetychni ta teplotekhnichni protsesy y ustatkuvannia, 12 (1055), 98–103.
  11. Peshko, V., Chernousenko, O., Nikulenkova, T., Nikulenkov, A. (2016). Comprehensive rotor service life study for high & intermediate pressure cylinders of high power steam turbines. Propulsion and Power Research, 5 (4), 302–309. doi: 10.1016/j.jppr.2016.11.008
  12. Trubilov, M. A., Arsen'ev, G. V., Frolov, V. V. et. al.; Kostyuk, A. G., Frolov, V. V. (Eds.) (1985). Parovye i gazovye turbiny. Moscow: Energoatomizdat, 352.

Downloads

Published

2018-03-16

How to Cite

Chernousenko, O., Rindyuk, D., Peshko, V., & Goryazhenko, V. (2018). Development of a technological approach to the control of turbine casings resource for supercritical steam parameters. Eastern-European Journal of Enterprise Technologies, 2(1 (92), 51–56. https://doi.org/10.15587/1729-4061.2018.126042

Issue

Section

Engineering technological systems