Improving the reliability of information­control systems at power generation facilities based on the fractal­cluster theory

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.126427

Keywords:

information processing, fractal cluster model, emergency signs, reliability criteria

Abstract

We have developed a cluster model for the structure of an informational space as a combination of informational signals that carry information about emergency signs at a deviation of a technological process parameters at electric power facilities, based on the application of an apparatus of the fractal-cluster theory. A dynamic fractal cluster model is derived to describe processes in the informational space of information control systems in software technical complex of the automated control system for a technological process at a power plant. We have established functional dependences of the dynamics of change in the electro-physical magnitudes of technological parameters, such as current and voltage, on the informational fractal dimensionalities. Based on the application of a dynamic fractal cluster model, we detected random informational signals that make it possible to identify false triggering and failures of technological equipment. To estimate the reliability criterion in the functioning of information control systems in software technical complex of the automated control system of a technological process at power plants, we derived analytical dependences that connect a gain in the amount of information, fractal time and the informational fractal dimensionality. By determining the amplitude, phase, and frequency of random informational signals in real time, we established conditions for the signs of emergency and pre-emergency. The obtained theoretical and practical results have been demonstrated to improve the reliability of operation of information control systems in a software technical complex for automated control systems.

Author Biographies

Pavlo Budanov, Ukrainian Engineering Pedagogics Academy Universytetska str., 16, Kharkiv, Ukraine, 61003

PhD, Associate Professor

Department of Physics, Electrical Engineering and Power Engineering

Kostiantyn Brovko, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002

PhD

Department of integrated electric technologies and processes

Artem Cherniuk, Ukrainian Engineering Pedagogics Academy Universytetska str., 16, Kharkiv, Ukraine, 61003

PhD, Associate Professor

Department of Physics, Electrical Engineering and Power Engineering

Pavlo Vasyuchenko, Ukrainian Engineering Pedagogics Academy Universytetska str., 16, Kharkiv, Ukraine, 61003

PhD, Associate Professor

Department of Physics, Electrical Engineering and Power Engineering

Viktor Khomenko, Ukrainian Engineering Pedagogics Academy Universytetska str., 16, Kharkiv, Ukraine, 61003

PhD

Department of power and energy-saving technologies

References

  1. Prat, S., Cavron, J., Kesraoui, D., Rauffet, P., Berruet, P., Bignon, A. (2017). An Automated Generation Approach of Simulation Models for Checking Control/Monitoring System. IFAC-PapersOnLine, 50 (1), 6202–6207. doi: 10.1016/j.ifacol.2017.08.1014
  2. Rudakov, S., Dickerson, C. E. (2017). Harmonization of IEEE 1012 and IEC 60880 standards regarding verification and validation of nuclear power plant safety systems software using model-based methodology. Progress in Nuclear Energy, 99, 86–95. doi: 10.1016/j.pnucene.2017.04.003
  3. Instrumentation and Control Systems and Software Important to Safety for Research Reactors (2015). IAEA Safety Standards. No. SSG-37, 100.
  4. DSTU IEC 62138:2008. Atomni elektrostantsiyi. Informatsiyni ta keruvalni systemy, vazhlyvi dlia bezpeky. Prohramni aspekty kompiuternykh system, yaki vykonuiut funktsiyi katehoriyi V abo S (2010). Kyiv.
  5. NP 306.5.02/3.076-2003. Vymohy do orhanizatsiyi ta poriadku vvedennia AES v ekspluatatsiyu (2003). Ofitsiynyi visnyk Ukrainy, 37, 236.
  6. Pedersen, A. S., Richter, J. H., Tabatabaeipour, M., Jóhannsson, H., Blanke, M. (2016). Fault tolerant emergency control to preserve power system stability. Control Engineering Practice, 53, 151–159. doi: 10.1016/j.conengprac.2015.11.004
  7. Park, S., Park, J., Heo, G. (2016). Transient Diagnosis and Prognosis for Secondary System in Nuclear Power Plants. Nuclear Engineering and Technology, 48 (5), 1184–1191. doi: 10.1016/j.net.2016.03.009
  8. Song, J.-G., Lee, J.-W., Park, G.-Y., Kwon, K.-C., Lee, D.-Y., Lee, C.-K. (2013). An analysis of technical security control requirements for digital I&C systems in nuclear power plants. Nuclear Engineering and Technology, 45 (5), 637–652. doi: 10.5516/net.04.2012.091
  9. Olsen, R. L., Madsen, J. T., Rasmussen, J. G., Schwefel, H.-P. (2017). On the use of information quality in stochastic networked control systems. Computer Networks, 124, 157–169. doi: 10.1016/j.comnet.2017.06.006
  10. Krivanek, R., Fiedler, J. (2017). Main deficiencies and corrective measures of nuclear power plants in ageing management for safe long term operation. Nuclear Engineering and Design, 323, 78–83. doi: 10.1016/j.nucengdes.2017.07.035
  11. Zhilenko, E. P., Pruss, S. Yu., Fomenko, N. Yu., Hristich, D. E. (2013). Upravlyaemye haos v ustanovivshihsya rezhimah elektroenergeticheskih system. Omskiy nauchniy vestnik, 2, 184–191.
  12. Severin, V. P., Nikulina, E. N., Trubchanova, N. V. (2016). Identifikaciya parametrov sistemy upravleniya proizvoditel'nost'yu parogeneratora energobloka AES. Visnyk Nats. tekhn. un-tu "KhPI". Ser.: Avtomatyka ta pryladobuduvannia, 15, 38–44.
  13. Madrigal-Espinosa, G., Osorio-Gordillo, G.-L., Astorga-Zaragoza, C.-M., Vázquez-Román, M., Adam-Medina, M. (2017). Fault detection and isolation system for boiler-turbine unit of a thermal power plant. Electric Power Systems Research, 148, 237–244. doi: 10.1016/j.epsr.2017.03.021
  14. Budanov, P. F., Brovko, K. Yu. (2016). Vliyanie fraktal'nyh svoystv informacionnogo prostranstva na process formirovaniya sluchaynogo signala s priznakami avariynosti. Systemy obrobky informatsiyi, 1 (138), 10–14.
  15. Budanov, P. F., Brovko, K. Yu. (2016). Eksperimental'nye issledovaniya prostranstvenno-vremennoy modeli informacionnogo prostranstva dlya processa formirovaniya sluchaynogo signala s priznakami avariynosti. Systemy obrobky informatsiyi, 3 (140), 227–233.
  16. Budanov, P. F., Brovko, K. Yu. (2016). Povyshenie nadezhnosti upravleniya tekhnologicheskim processom energoob'ekta sposobom viyavleniya avariynyh priznakov v neshtatnyh rezhimah funkcionirovaniya na osnove metoda fraktal'nogo obnaruzheniya. Systemy obrobky informatsiyi, 7, 175–180.
  17. Budanov, P. F., Brovko, K. Yu. (2016). Pat. No. 113804 UA. Sposib vyiavlennia avariynykh oznak u pozashtatnykh rezhymakh funktsionuvannia enerhoobiekta. MPK G06F 1/00, G05B 23/02. No. 201609397; declareted: 09.09.2016; published: 10.02.2017, Bul. No. 3.
  18. Govorov, P. P., Budanov, P. F., Brovko, K. Yu. (2017). Identification Of Emergency Regimes Of Power Equipment Based On The Application Of Dynamic Fractal-Cluster Model. International Scientific Conference UNITECH 2017 Gabrovo: Proceedings. Gabrovo, 1, 57–58.

Downloads

Published

2018-03-20

How to Cite

Budanov, P., Brovko, K., Cherniuk, A., Vasyuchenko, P., & Khomenko, V. (2018). Improving the reliability of information­control systems at power generation facilities based on the fractal­cluster theory. Eastern-European Journal of Enterprise Technologies, 2(9 (92), 4–12. https://doi.org/10.15587/1729-4061.2018.126427

Issue

Section

Information and controlling system