Design of the laboratory bench for a hydrovolumetric-mechanical transmission of the tracked tractor

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.126548

Keywords:

tractor, transmission, laboratory bench, planetary mechanism, circulation of power, hydrovolumetric turning mechanism

Abstract

Double-flow hydrovolumetric mechanical transmissions is an advanced technical solution that aims to increase productivity, improve efficiency and convenience of control over wheeled and tracked tractors. Their arrangement renders considerable potential for their modernization and makes it possible to introduce recuperation systems that would enhance their performance efficiency coefficient to the level of mechanical transmissions. Innovativeness of these transmissions and the lack of a sufficient number of prototypes largely hinder their implementation in production.

A large number of possible HT circuits necessitates the creation of an original bench-prototype for each of them. In order to solve this task, we proposed in this paper a kinematic circuit of the universal testing laboratory bench for HT of the tracked tractor. Its design makes it possible to study HT circuits of the type with a differential «at the output», the type with a differential «at the input» for both wheeled and tracked vehicles, and to simulate the process of work of a hydrovolumetric turning mechanism. Introduction of electric generators to the design makes it possible to estimate in practice the effectiveness of recuperation of kinetic energy at braking, as well as parasite power that circulates in the closed circuit of HT during acceleration and braking.

We give quasi-static characteristics of basic HT circuits that are simulated at the laboratory bench. The results were obtained based on an improved mathematical model that makes it possible to determine the volumetric, mechanical, and full performance efficiency coefficient of separate hydraulic machines in the direct and reverse flows of power and special working regions of hydraulic gear. For the transmissions with a differential «at the output», maximal performance efficiency coefficient reaches 83 %, indicating the proper selection of gear ratios and standard size of hydraulic machines.

The results obtained are of interest for industrial and design organizations, specializing in the development of transmissions for transportation vehicles. Employing the developed bench would significantly reduce the time between designing and industrial implementation. There is a possibility to confirm experimentally the efficiency and high technical-economic indicators of the proposed transmission. Such a bench will make it possible for scientific institutions to discover new phenomena and processes in HT, systematize the influence of gear ratios of reducers, planetary mechanisms, and their number, on the working processes in HT.

Author Biography

Nikolay Mittsel, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Lecturer

Department of Motor vehicle and automotive industry

References

  1. Samorodov, V., Kozhushko, A., Pelipenko, E. (2016). Formation of a rational change in controlling continuously variable transmission at the stages of a tractor’s acceleration and braking. Eastern-European Journal of Enterprise Technologies, 4 (7 (82)), 37. doi: 10.15587/1729-4061.2016.75402
  2. Samorodov, V. B., Taran, I. A. (2012). Analiz raspredeleniya potokov moshchnosti s uchetom KPD gidroob'emnoy peredachi v dvuhpotochnyh besstupenchatyh gidroob'emno-mekhanicheskih transmissiyah s differencialom na vyhode. Visnyk Natsionalnoho tekhnichnoho universytetu "KhPI", 60 (966), 7–16.
  3. Bondarenko, A. I. (2015). Kolichestvennaya ocenka stepeni utomleniya operatorov-voditeley kolesnyh traktorov s razlichnymi tipami transmissiy. Privolzhskiy nauchniy vestnik, 2 (42), 11–14.
  4. Chmil', V. P., Chmil', Yu. V. (2012). Sistema rekuperacii kineticheskoy energii avtomobilya KamAZ. Avtomobil'naya promyshlennost', 8, 13–15.
  5. Gusakov, S. V., Markov, V. A., Afanas'eva, I. V. (2012). Uluchshenie ekspluatacionnyh pokazateley transportnyh sredstv pri ispol'zovanii gibridnyh silovyh ustanovok. Izvestiya vysshih uchebnyh zavedeniy. Mashinostroenie, 2, 32–41.
  6. Bottiglione, F., De Pinto, S., Mantriota, G. (2014). Infinitely Variable Transmissions in neutral gear: Torque ratio and power re-circulation. Mechanism and Machine Theory, 74, 285–298. doi: 10.1016/j.mechmachtheory.2013.12.017
  7. Mantriota, G. (2002). Performances of a parallel infinitely variable transmissions with a type II power flow. Mechanism and Machine Theory, 37 (6), 555–578. doi: 10.1016/s0094-114x(02)00018-6
  8. Samorodov, V. B., Rogov, A. V., Ostroverh, A. O. (2009). Universal'naya matrichnaya metodika rascheta trekhzvennyh planetarnyh mekhanizmov v avtomobile i traktorostroenii. Visti Avtomobilno-dorozhnoho instytutu, 2 (9), 141–148.
  9. Mittsel, M. O., Kozhushko, A. P., Mittsel, M. O. (2015). Dorozhni vyprobuvannia kolisnoho traktoru z dvopotokovoiu hidroobiemno-mekhanichnoiu transmisieiu. Perviy nezavisimiy nauchniy vestnik, 1, 54–61.
  10. Kalinin, S. V., Samorodov, V. B., Derkach, O.I., Zabielyshynskyi, Z. E., Shuba, S. O., Avrunin, H. A. (2011). Pat. No. 66541 UA. Hidroobiemno-mekhanichna transmisiya transportnoho zasobu. MPK 7 F16H 47/00. No. u201107120; declareted: 06.06.2011; published: 10.01.2012, Bul. No. 1.
  11. Derkach, O. I., Samorodov, V. B., Sysoiev, O. V., Butylin, O. A., Zhuravlov, S. V., Shyhin, Ya. V., Zaozerskyi, O. V. (2010). Pat. No. 52807 UA. Hidroobiemna transmisiya transportnoho zasobu. MPK 7 B60K 17/00. No. u201002675; declareted: 10.03.2010; published: 10.09.2010, Bul. No. 17.
  12. Shuba, S. O. (2006). Pat. No. 17851 UA. Hidroobiemno-mekhanichna transmisiya transportnoho zasobu. MPK7 F16H 3/44. No. u200604301; declareted: 17.04.2006; published: 16.10.2006, Bul. No. 10.
  13. Kalinin, S. V., Samorodov, V. B., Derkach, O. I., Zabielyshynskyi, Z. E., Shuba, S. O., Shapovalov, Yu. K. (2011). Pat. No. 66540 UA. Hidroobiemno-mekhanichna transmisiya transportnoho zasobu. MPK7 F16H 47/00. No. u201107114; declareted: 06.06.2011; published: 10.01.2012, Bul. No. 1.
  14. Samorodov, V. B., Mitcel', N. A. (2014). Investigation of step electric drive as a control system for double-split hydrostatic mechanical transmissions. Eastern-European Journal of Enterprise Technologies, 5 (7 (71)), 52–58. doi: 10.15587/1729-4061.2014.28219
  15. Samorodov, V. B. (1998). Osnovy teorii avtomatizirovannoy generacii matematicheskih modeley transmissiy. Mekhanika i mashinostroenie, 1, 109–115.
  16. Mittsel, M. O. (2015). Doslidzhennia yavyshcha neodnochasnoi zminy roboty obiemnykh hidromashyn. Silskohospodarski mashyny, 32, 119–125.

Downloads

Published

2018-03-21

How to Cite

Mittsel, N. (2018). Design of the laboratory bench for a hydrovolumetric-mechanical transmission of the tracked tractor. Eastern-European Journal of Enterprise Technologies, 2(7 (92), 34–43. https://doi.org/10.15587/1729-4061.2018.126548

Issue

Section

Applied mechanics