Improvement of reliability of fire engineering equipment based on a jet-niche technology

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.126917

Keywords:

flame stabilizer, burner device, «poor» flameout, fuel distribution, liquefied gas

Abstract

The obtained results address the solution to problems on enhancing the reliability and operation efficiency of fuel consuming equipment at industrial and power engineering facilities in the course of low-cost modernization through the introduction of effective fuel combustion technology.

Using statistical methods of experiment planning, regression dependences of boundaries of the detachment work of burners were obtained. Solving the optimization problems for the derived functions made it possible to select the values of fuel distribution parameters for natural and liquefied gases with the purpose of decreasing the operation technical minimum of FE loading. As a result, possibilities of starting the equipment at gas pressure Рstart=10 Pа were achieved and minimally possible workload of FE was decreased up to 5…10 % of the nominal, which corresponds to the coefficient of working load regulation KR>10. The presented results on improvement of starting characteristics of burners, as well as reserving of natural gas by liquefying will make it possible to ensure reliability of FE operation. A decrease in starting consumption minimizes the possibility of gas contamination of the furnace space (explosiveness) and decreases thermal intensity of FE elements, preventing the thermal «shock» on the heat exchange surface of the equipment.

Author Biographies

Michael Abdulin, National Technical University of Ukraine «Igor Sikorsky Kyiv Politechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of heat and power plants of thermal and nuclear power plants

Alex Siryi, National Technical University of Ukraine «Igor Sikorsky Kyiv Politechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD

Department of heat and power plants of thermal and nuclear power plants

Andrew Zhuchenko, Production Association "SNT" ("Stream-Niche Technology") Kyrylivska str., 102, Kyiv, Ukraine, 04080

PhD, engineering manager

Alexis Abdulin, Production Association "SNT" ("Stream-Niche Technology") Kyrylivska str., 102, Kyiv, Ukraine, 04080

Lead engineer

References

  1. Faramawy, S., Zaki, T., Sakr, A. A.-E. (2016). Natural gas origin, composition, and processing: A review. Journal of Natural Gas Science and Engineering, 34, 34–54. doi: 10.1016/j.jngse.2016.06.030
  2. Xiong, X., Lin, W., Gu, A. (2016). Design and optimization of offshore natural gas liquefaction processes adopting PLNG (pressurized liquefied natural gas) technology. Journal of Natural Gas Science and Engineering, 30, 379–387. doi: 10.1016/j.jngse.2016.02.046
  3. Directive 2010/75/EU of the European Parliament and of the Council (2010). Access to European Union law, 119.
  4. Baukal, C. E. (Ed.) (2003). Industrial Burners Handbook. CRC Press, 808. doi: 10.1201/9780203488805
  5. Ahmed, S. F., Balachandran, R., Marchione, T., Mastorakos, E. (2007). Spark ignition of turbulent nonpremixed bluff-body flames. Combustion and Flame, 151 (1-2), 366–385. doi: 10.1016/j.combustflame.2007.06.012
  6. Kedia, K. S., Ghoniem, A. F. (2012). Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate. Combustion and Flame, 159 (3), 1055–1069. doi: 10.1016/j.combustflame.2011.10.014
  7. Lin, C.-X., Holder, R. J. (2010). Reacting Turbulent Flow and Thermal Field in a Channel With Inclined Bluff Body Flame Holders. Journal of Heat Transfer, 132 (9), 091203. doi: 10.1115/1.4001627
  8. Guo, P., Zang, S., Ge, B. (2010). Technical Brief: Predictions of Flow Field for Circular-Disk Bluff-Body Stabilized Flame Investigated by Large Eddy Simulation and Experiments. Journal of Engineering for Gas Turbines and Power, 132 (5), 054503. doi: 10.1115/1.3205029
  9. E, J., Huang, H., Zhao, X. (2016). Numerical investigations on effects of bluff body in flat plate micro thermo photovoltaic combustor with sudden expansion. Journal of Central South University, 23 (4), 975–982. doi: 10.1007/s11771-016-3145-6
  10. Lefebvre, A. H., Ibrahim, A. R. A. F., Benson, N. C. (1966). Factors affecting fresh mixture entrainment in bluff-body stabilized flames. Combustion and Flame, 10 (3), 231–239. doi: 10.1016/0010-2180(66)90079-4
  11. Abdulin, M. Z., Siryi, O. A. (2014). Research of hydrodynamic flame stabilizer with cross fuel feed characteristics. Riga Technical University, 15, 12–18.
  12. Abdulin, M. Z., Dzhamal, I. (1997). Teplovyi rezhym mikrodyfuziynoho hazohorilochnoho prystroiu. Naukovi visti NTUU «KPI», 111–113.
  13. Abdulin, M. Z., Dvorcin, G. R., Zhuchenko, A. M. et. al. (2008). Struyno-nishevaya tekhnologiya szhiganiya topliva – osnova nadezhnoy raboty ognetekhnicheskogo oborudovaniya / Abdulin M. Z., Dvorcin G. R., Zhuchenko A. M. et. al. // Tret'ya Mezhdunarodnaya nauchno-prakticheskaya konferenciya «Energoeffektivnost' krupnogo promyshlennogo regiona». Doneck, 18–24.
  14. Fialko, N. M., Prokopov, V. H., Alyosha, S. A., Sherenkovskyy, Y. et. al. (2013). Performance analysis of cooling stabilizing burners for different stress boiler unit. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Teoriya i praktyka budivnytstva, 756, 43–46.
  15. Chernousenko, O., Butovsky, L., Rindyuk, D., Granovska, O., Moroz, O. (2017). Analysis of residual operational resource of high-temperature elements in power and industrial equipment. Eastern-European Journal of Enterprise Technologies, 1 (8 (85)), 20–26. doi: 10.15587/1729-4061.2017.92459
  16. Osipova, N. N. (2010). Vybor optimal'nih parametrov poselkovyh sistem gazosnabzheniya na baze rezervuarnih ustanovok s iskusctvennym ispareniem szhiszhennogo uglevodorodnogo gaza. Vestnik SGTU, 182–186.
  17. Adler, Yu. P., Markova, E. V., Granovskiy, Yu. V. (1976). Planirovanie eksperimenta pri poiske optimal'nyh usloviy. Moscow: Nauka, 279.
  18. Gartman, T. N., Vasil'ev, V. V., Petrishchev, S. D. et. al. (2006). Statisticheskaya obrabotka rezul'tatov aktivnogo eksperimenta. Moscow: RHTU im. D. I. Mendeleeva, 52.
  19. Abomelik, T. P. (2016). Metrologiya planirovaniya eksperimenta. Sbornik laboratornyh rabot. Ul'yanovsk: UlGTU, 36.
  20. Ivanov, Yu. V. (1972). Gazogorelochnye ustroystva. Moscow: Nedra, 276.

Downloads

Published

2018-03-26

How to Cite

Abdulin, M., Siryi, A., Zhuchenko, A., & Abdulin, A. (2018). Improvement of reliability of fire engineering equipment based on a jet-niche technology. Eastern-European Journal of Enterprise Technologies, 2(8 (92), 12–19. https://doi.org/10.15587/1729-4061.2018.126917

Issue

Section

Energy-saving technologies and equipment