Determining the patterns of phase and structural transformations at carbon­thermal reduction of molybdenum concentrate

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.127306

Keywords:

molybdenum concentrate, carbothermal reduction, phase analysis, microscopic study, carbide formation, alloying

Abstract

We have studied patterns in the influence of O/C in the charge on the content of C, O2, and Mo in metallized molybdenum concentrate after different temperatures of thermal treatment. it was determined that O/C at 1.75‒2.00 in the charge after treatment at 1,223–1,423 K provides for the content of Mo in metallized molybdenum concentrate at 74.6–78.0 % by weight. The content of C and O2 was 0.5–2.0 % by weight, and 0.6–5.5 % by weight, respectively. At O/C in the charge at 2.50, the products of reduction after heat treatment at 1,323 K consisted of Mo and MoO2. The residual molybdenum-containing oxide component is due to the insufficient amount of a reducing agent. The presence in the phase composition of carbide Mo2C together with Mo was found at O/C in the charge at 1.33, indicating a certain excess of the carbon reducing agent. The most favorable conditions for reduction were ensured at O/C in the charge at the level of 1.83 with a transition of most of the oxides to the metal phase of Mo. We have obtained a spongy structure of the metallized product, which ensures an increased rate of dissolving the obtained molybdenum-containing additive in a liquid metal at alloying. We did not identify in the phase composition any compounds susceptible to sublimation, which predetermines a reduction in the losses of Mo when using an alloying additive.

Author Biographies

Stanislav Hryhoriev, Zaporizhzhya National University Zhukovskoho str., 66, Zaporizhzhya, Ukraine, 69600

Doctor of Technical Sciences, Professor

Department of business administration and international management

Artem Petryshchev, Zaporizhzhya National Technical University Zhukovskoho str., 64, Zaporizhzhya, Ukraine, 69063

PhD, Associate Professor

Department of Labour and Environment Protection

Ganna Shyshkanova, Zaporizhzhya National Technical University Zhukovskoho str., 64, Zaporizhzhya, Ukraine, 69063

PhD, Associate Professor

Department of Applied Mathematics

Tetyana Zaytseva, Oles Honchar Dnipro National University Gagariva ave., 72, Dnipro, Ukraine, 49010

PhD, Associate Professor

Department of Computer Technologies

Oleksandr Frydman, Oles Honchar Dnipro National University Gagariva ave., 72, Dnipro, Ukraine, 49010

PhD, Associate Professor

Department of Statistics and Probability Theory

Yuliya Petrusha, Zaporizhzhya National University Zhukovskoho str., 66, Zaporizhzhya, Ukraine, 69600

PhD, Associate Professor

Department of Chemistry

Andrey Andreev, Zaporizhzhya National University Zhukovskoho str., 66, Zaporizhzhya, Ukraine, 69600

PhD, Associate Professor

Department of physics and methods of teaching

Alexander Katschan, Zaporizhzhya National Technical University Zhukovskoho str., 64, Zaporizhzhya, Ukraine, 69063

Senior Lecturer

Department of software development

Mykola Lazutkin, Zaporizhzhya National Technical University Zhukovskoho str., 64, Zaporizhzhya, Ukraine, 69063

PhD, Associate Professor

Department of Labour and Environment Protection

Nina Sinyaeva, Zaporizhzhya National University Zhukovskoho str., 66, Zaporizhzhya, Ukraine, 69600

PhD, Associate Professor

Department of Chemistry

References

  1. Belokon, K. V., Belokon, Y. A., Kozhemyakin, G. B., Matukhno, E. V. (2016). Еnvironmental assessment of the intermetallic catalysts utilization efficiency for deactivation of the pollutants emitted by electrode production enterprises. Scientific bulletin of National mining university, Scientific and technical journal, 3, 87–94.
  2. Dang, J., Zhang, G.-H., Chou, K.-C., Reddy, R. G., He, Y., Sun, Y. (2013). Kinetics and mechanism of hydrogen reduction of MoO3 to MoO2. International Journal of Refractory Metals and Hard Materials, 41, 216–223. doi: 10.1016/j.ijrmhm.2013.04.002
  3. Wang, L., Zhang, G.-H., Chou, K.-C. (2016). Synthesis of nanocrystalline molybdenum powder by hydrogen reduction of industrial grade MoO3. International Journal of Refractory Metals and Hard Materials, 59, 100–104. doi: 10.1016/j.ijrmhm.2016.06.001
  4. Gurevich, Yu. G., Avsyannikov, V. E. (2013). Termodinamicheskiy analiz reakciy sovmestnogo vosstanovleniya molibdena i zheleza iz ih oksidov. Vestnik Kurganskogo gosudarstvennogo universiteta. Seriya: Tekhnicheskie nauki, 29, 73–74.
  5. Zhu, H., Li, Z., Yang, H., Luo, L. (2013). Carbothermic Reduction of MoO3 for Direct Alloying Process. Journal of Iron and Steel Research, International, 20 (10), 51–56. doi: 10.1016/s1006-706x(13)60176-4
  6. Donskih, D. K. (2008). Razrabotka i osvoenie tekhnologii pererabotki othodov vol'frama i molibdena. Stal', 8, 73.
  7. Ershova, I. O., Akimenko, V. B., Fedotenkova, O. B., Chistilina, O. V., Popova, O. I. (2010). Molybdenum powder obtained on the basis of oxides from different suppliers. Steel in Translation, 40 (9), 857–863. doi: 10.3103/s0967091210090202
  8. Torabi, O., Golabgir, M. H., Tajizadegan, H., Torabi, H. (2014). A study on mechanochemical behavior of MoO3–Mg–C to synthesize molybdenum carbide. International Journal of Refractory Metals and Hard Materials, 47, 18–24. doi: 10.1016/j.ijrmhm.2014.06.001
  9. Novoselova, L. Y. (2014). Mo and MoO 3 powders: Structure and resistance to CO. Journal of Alloys and Compounds, 615, 784–791. doi: 10.1016/j.jallcom.2014.07.006
  10. Aydinyan, S. V. (2011). Vliyanie razbavleniya iskhodnoy shihty na teplovoy rezhim vosstanovleniya MoO3 smes'yu Mg+C. Himicheskiy zhurnal Armenii, 64 (4), 465–476.
  11. Long, T. V., Palacios, J., Sanches, M., Miki, T., Sasaki, Y., Hino, M. (2012). Recovery of Molybdenum from Copper Slags. ISIJ International, 52 (7), 1211–1216. doi: 10.2355/isijinternational.52.1211
  12. Van Long, T., Miki, T., Sasaki, Y., Hino, M. (2012). Recovery of Molybdenum from Spent Lubricant. ISIJ International, 52 (7), 1217–1224. doi: 10.2355/isijinternational.52.1217
  13. Ryabchikov, I. V., Belov, B. F., Mizin, V. G. (2014). Reactions of metal oxides with carbon. Steel in Translation, 44 (5), 368–373. doi: 10.3103/s0967091214050118
  14. Badenikov, A. V., Badenikov, V. Ya., Bal'chugov, A. V. (2015). Kinetika plazmennogo vosstanovleniya trekhokisi molibdena. Vestnik Angarskogo gosudarstvennogo tekhnicheskogo universiteta, 9, 8–10.
  15. Grigor’ev, S. M., Petrishchev, A. S. (2015). Refining metallized molybdenum concentrate by means of a low-temperature plasma-forming mixture. Steel in Translation, 45 (12), 954–958. doi: 10.3103/s0967091215120049
  16. Petryshchev, A., Hryhoriev, S., Shyshkanova, G., Skuibida, O., Zaytseva, T., Frydman, O., Mizerna, O. (2017). Research into resource-saving molybdenum-containing alloying additive, obtained by the metallization of oxide concentrate. Eastern-European Journal of Enterprise Technologies, 3 (5 (87)), 18–23. doi: 10.15587/1729-4061.2017.104078

Downloads

Published

2018-03-29

How to Cite

Hryhoriev, S., Petryshchev, A., Shyshkanova, G., Zaytseva, T., Frydman, O., Petrusha, Y., Andreev, A., Katschan, A., Lazutkin, M., & Sinyaeva, N. (2018). Determining the patterns of phase and structural transformations at carbon­thermal reduction of molybdenum concentrate. Eastern-European Journal of Enterprise Technologies, 2(12 (92), 27–32. https://doi.org/10.15587/1729-4061.2018.127306

Issue

Section

Materials Science