Segmentation of the pipeline leakage signals by means of wavelet-analysis

Authors

  • Віктор Олександрович Строганов Sevastopol National Technical University Universitetskaya str, 33, Sevastopol, 99053, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.12750

Keywords:

Segmentation, wavelet-transform, pipeline leaks

Abstract

The methods of underground pipeline signals segmentation based on wavelet neural network and discrete wavelet transform were proposed. Segmentation is a stage, preceding the analysis and classification of signals in order to detect leaks. It is used to highlight areas of the signal containing no external industrial noise. The effectiveness of the proposed methods of segmentation was investigated.

Analysis of the acoustic signal is one of the most promising approaches to the detection of  underground pipeline leaks. Signal emitted by the pipe can be read on the ground surface and on the basis of it’s analysis the decision about the presence or absence of a leak can be made. One problem here is the presence of external industrial noise from passing vehicles, working mechanisms, etc.

This work is devoted to developing a pipeline signals segmentation method. The purpose of this method is to separate the signal without noise and the signal influenced by external noise.

Segmentation method based on the wavelet transform of the leakage signal was proposed. “Details” coefficients obtained on a single step of the wavelet decomposition, provide information about the presence or absence of external noise. Decision about the noise presence can be made on the base of the coefficients energy analysis.

Proposed method was tested on the model signals and signals obtained during the experiment

Author Biography

Віктор Олександрович Строганов, Sevastopol National Technical University Universitetskaya str, 33, Sevastopol, 99053

Department of Information systems

References

  1. Разработка методов повышения эффективности обнаружения и локализации мест протекания трубопроводов. Заключительный отчет госбюджет¬ной НИР [Текст] / Руководитель НИР В.С. Чернега. – Севастополь: СевНТУ, 2004. – 145 с.
  2. Brechbuehl, M. Beitrag zur akustischen Ortung von Leckstellen [Текст] / M. Brechbuehl. – Zuerich: Diss.ETH, 1988. – 182 с.
  3. Строганов, В. А. Классификация сигналов утечек подземных трубопроводов с помощью искусственных нейронных сетей [Текст] / В. А. Строганов // «Восточно-Европейский журнал передовых технологий», 2012.– № 6/4(60).– С. 33–36.
  4. Строганов, В. А. Экспериментальное исследование сигналов утечек подземных трубопроводов [Текст] / В.А. Строганов, В. Н. Хоролич// Вестник СевНТУ. Сер. Информатика, электроника, связь: Сб. науч. тр. – Севастополь, 2010.– Вып.101.– С. 29–32.
  5. Mallat, S. A wavelet tour of signal processing [Текст] / S.Mallat.– San Diego: Academic Press, 2001.– 620 с.
  6. Daubechies, I. Ten lectures on wavelets [Текст] / I. Daubechies// CBMS-NSF conference series in applied mathematics. SIAM, 1992.– Том. 61.– 357 с.
  7. Chui Charle, K. Wavelets: A Mathematical Tool for Signal Analysis [Текст] / Charles K. Chui // Siam Monographs on Mathematical Modeling and Computation.– 1997.–Том 1.– 210 с.
  8. Mallat, S. A theory for multiresolution signal decomposition: the wavelet representation [Текст] / S. Mallat // IEEE Pattern Anal. and Machine Intell., 1989.– Том 11.– №7.– С. 674–693.
  9. Chui Charles, K. An Introduction to Wavelets [Текст] / Charles K. Chui.– San Diego: Academic Press, 1992.– 264 с.
  10. Бондарев, В. Н. Цифровая обработка сигналов: методы и средства [Текст] / В. Н. Бондарев, Г. Трестер, В. С. Чернега.– Севастополь: Изд-во СевГТУ, 1999.– 398 с.
  11. Chernega V. S. (2004) Development of methods to increase the efficiency of detection and localization of pipeline leakages [Razrabotka metodov povysheniia effektivnosti obnaruzheniia i lokalizatsii mest protekaniia truboprovodov]. Final Report on the scientific work. Sevastopol, SevNTU, 145 p.
  12. Brechbuehl M. (1988) Beitrag zur akustischen Ortung von Leckstellen. Zuerich: Diss.ETH, 182.
  13. Stroganov, V. A. (2012) Classification of the underground pipeline leakage signals by means of the artificial neural networks [Klassifikatsiia signalov utechek podzemnyh truboprovodov s pomoschiu iskusstvennyh neironnyh setei].«Vostochno-evropeiskii zhurnal peredovyh tehnologii» – Easten-European Journal of Enterprise Technologies, №6/4(60), 33–36.
  14. Stroganov, V. A., Horolich V. N. (2010) Experimental investigation of underground pipeline leakage signals [Eksperimentalnoe issledovanie signalov utechek podzemnyh truboprovodov]. Vestnik SevNTU: Informatica, electronica, svyaz’ – SevNTU Herald: Informatics, electronics, communication, №101, 29–32.
  15. Mallat S. (2001) A wavelet tour of signal processing. San Diego: Academic Press, 620.
  16. Daubechies I. (1992) Ten lectures on wavelets. CBMS-NSF conference series in applied mathematics. SIAM, Vol. 61, 357.
  17. Chui Charles K. Wavelets: A (1997) Mathematical Tool for Signal Analysis. Siam Monographs on Mathematical Modeling and Computation, Vol. 1.– 210 p.
  18. Mallat S. (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal. and Machine Intell., Vol 11.– №7.– 674–693.
  19. Chui Charles, K. (1992) An Introduction to Wavelets. San Diego: Academic Press, 264 p.
  20. Bondarev V. N., Troester G., Chernega V. S. (1999) Digital signal processing: Methods and Instruments [Tsifrovaia obrabotka signalov: metody i sredstva]. Sevastopol: SevGTU Press, 398.

Published

2013-04-25

How to Cite

Строганов, В. О. (2013). Segmentation of the pipeline leakage signals by means of wavelet-analysis. Eastern-European Journal of Enterprise Technologies, 2(10(62), 32–35. https://doi.org/10.15587/1729-4061.2013.12750

Issue

Section

Applied Information Technology