The models of "Man-Machine-Environment" systems with recovery at non-classic stream of events

Authors

  • Ігор Володимирович Наумейко Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166, Ukraine
  • Рази Джабурія Аль-Азава Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.12756

Keywords:

Markov chain, Kolmogorov equations, maximum entropy

Abstract

The closed “Man-machine-environment” system is considered. It has either classic flow of events, or a flow of unstable of natural disasters with different densities, that are approximated by piecewise constant functions. The process of liquidation of the accident in all the models is held in several stages, with different intensities. The phases can be made repeatedly in the case of "multi-catastrophes". The Markovian model is presented, in which the probability of changes in health of the operator in the process of liquidation of the accident is found using the principle of maximizing the information entropy.  The stability time of the process and the value of changing the dynamic model to stationary one are estimated. The safety criterion of situation that is the ratio of the average time between failures and mean time of recovery is introduced and investigated

Author Biographies

Ігор Володимирович Наумейко, Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166

PhD, Associate Professor

Department of Applied Mathematics

Рази Джабурія Аль-Азава, Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166

Postgraduate student

Department of Applied Mathematics

References

  1. Арнольд, В. И. «Жесткие» и «мягкие» математические модели [Текст] / В. И. Арнольд // М.: МЦНМО, 2000, 32 с.
  2. Вентцель, Е.С. Исследование операцій [Текст] / Е.С. Вентцель // М.: Советское радио, 1972, 552 с.
  3. Хинчин, А. Я. Работы по математической теории массового обслуживания [Текст] / А. Я. Хинчин // Под редакцией Б. В. Гнеденко. М.: Физматгиз, 1963, 236 с.
  4. Хакен, Г. Информация и самоорганизация [Текст] / Г. Хакен// М.: КомКнига, 2005, 248 с.
  5. Аль-Азави, Р. Дж. Об одном подходе к моделированию человеко-машинных систем восстановления в критических ситуациях [Текст] / Р. Дж. Аль-Азави // 16-й Международный молодежный форум «РАДИОЭЛЕКТРОНИКА И МОЛОДЕЖЬ В ХХІ веке» 17–19 апреля 2012 г. – С. 131-132
  6. Razi J. Alazawi Markovian Approach To Man-Machine-Environment Systems [Текст] / R. J. Alazawi/ / Радиотехника, №170, Харьков, 2012. С.14-18.
  7. Аль-Азави, Р. Дж. Моделирование Человеко-Машинных Систем восстановления в критических ситуациях с помощью процессов гибели и размножения [Текст] / Р. Дж. Аль-Азави //Радиотехника, Харьков, 2013 (в печати).
  8. Наумейко, И.В. К расчету марковской модели эргатической системы [Текст] / И. В. Наумейко, А.В. Сова //Сб Науч.Труд. 5-Й Юбилейной Международной Научной конференции "ФУНКЦИОНАЛЬНАЯ БАЗА НАНОЭЛЕКТРОНИКИ" Харьков-Крым, 2012. С. 236-239.
  9. Jaynes E.T. Where do we stand on maximum entropy? [Текст] / E.T. Jaynes// in R.D. Levine and M. Tribus (eds), The Maximum Entropy Formalism (Cambridge, Mass.: M.I.T. Press),1978.
  10. Jaynes, E.T. WHERE DO WE GO FROM HERE? [Текст] / E.T. Jaynes// C.Ray Smith and W.T. Grandy, Jr.(eds), Maximum-Entropy and Bayesian Methods in Inverse Problems, 21-58. 1985 by D. Reidel Publishing Company.
  11. Arnold V.I. "hard" and "soft" mathematical models [Text] / VI Arnold / / Moscow MCCME, 2000, p. 32
  12. Wentzel, ES Operatsіy study [text] / ES Wentzel / / Moscow: Soviet Radio, 1972, p.552
  13. Khinchin, A. I. Work on the mathematical theory of queuing [Text] / Khinchin / / Edited by Gnedenko. Fizmatgiz, 1963, p.236
  14. Haken, H. Information and Self-Organization [Text] / Haken / / Moscow KomKniga, 2005, p.248
  15. Al Azawi, R.J. An approach to modeling human-machine systems recovery in critical situations [Text] / RJ Al Azavi / / 16th International Youth Forum "ELECTRONICS AND YOUTH IN XXI century" 17 - April 19, 2012 - P. 131-132
  16. Razi J. Alazawi Markovian Approach To Man-Machine-Environment Systems [Text] / R. J. Alazawi / / Radio, № 170, Kharkov, 2012. P.14-18
  17. Al Azawi, R.J. Modeling human-machine system recovery in critical situations with life and death processes [Text] / RJ Al Azavi / / Radio Engineering, Kharkov, 2013 (in press).
  18. Naumeyko, I. V. Calculation of Markov model ergatic system [Text] / I. V. Naumeyko, AV Owl / / Sat Nauch.Trud. 5th Anniversary of the International Scientific Conference "Functional Nano electronics" Kharkiv-Crimea, 2012. p. 236-239.
  19. Jaynes E.T. Where do we stand on maximum entropy? [Text] / E.T. Jaynes / / in R.D. Levine and M. Tribus (eds), The Maximum Entropy Formalism (Cambridge, Mass.: MIT Press), 1978.
  20. Jaynes, E.T. WHERE DO WE GO FROM HERE? [Text] / E.T. Jaynes / / C.Ray Smith and W.T. Grandy, Jr. (Eds), Maximum-Entropy and Bayesian Methods in Inverse Problems, p.21-58. 1985 by D. Reidel Publishing Company.

Published

2013-04-25

How to Cite

Наумейко, І. В., & Аль-Азава, Р. Д. (2013). The models of "Man-Machine-Environment" systems with recovery at non-classic stream of events. Eastern-European Journal of Enterprise Technologies, 2(10(62), 55–58. https://doi.org/10.15587/1729-4061.2013.12756

Issue

Section

Applied Information Technology