Definition of the aging process parameters for nickel hydroxide in the alkaline medium

Authors

  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0001-8879-7189
  • Vadym Kovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732

DOI:

https://doi.org/10.15587/1729-4061.2018.127764

Keywords:

aging, nickel hydroxide, Ni(OH)2, Co(OH)2, alkaline accumulator, utilization coefficient, defect, crystal lattice

Abstract

The parameters of theaging process of nickel hydroxide in thealkali medium, depending on aging time and presence of cobalt hydroxide additive, have been determined. It was revealed that theaging process is governed by re-crystallization of nickel hydroxide and it also occurs through theordering of crystal lattice defects, including in the direction along (001) plane. It was determined that aging results in a significant decrease of theutilization coefficient of nickel hydroxide. It was also revealed that theaging rate is high initially, but decreases overtime. It was determined that theutilization coefficient for nickel hydroxide with and without cobalt hydroxide had decreased by 37 % and 47 %, respectively, after aging in 4.5МКОНfor 56 days. The mechanism describing thechange of theaverage discharge potential for theaged samples with cobalt hydroxide has been proposed. It is assumed that aging of nickel hydroxide with cobalt hydroxide leads to theformation of a layered double hydroxide film on thesurface of nickel particles.

Author Biographies

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Vadym Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

References

  1. Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: 10.15587/1729-4061.2017.110390
  2. Huggins, R., Prinz, H., Wohlfahrtmehrens, M., Jorissen, L., Witschel, W. (1994). Proton insertion reactions in layered transition metal oxides. Solid State Ionics, 70-71, 417–424. doi: 10.1016/0167-2738(94)90347-6
  3. Kovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: 10.15587/1729-4061.2016.79406
  4. Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: 10.1007/s10008-016-3405-2
  5. Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: 10.15587/1729-4061.2017.97371
  6. Kotok, V. A., Malyshev, V. V., V. Solovov, A., Kovalenko, V. L. (2017). Soft Electrochemical Etching of FTO-Coated Glass for Use in Ni(OH) 2 -Based Electrochromic Devices. ECS Journal of Solid State Science and Technology, 6 (12), P772–P777. doi: 10.1149/2.0071712jss
  7. Kovalenko, V., Kotok, V., Yeroshkina, A., Zaychuk, A. (2017). Synthesis and characterisation of dye­intercalated nickel­aluminium layered­double hydroxide as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 27–33. doi: 10.15587/1729-4061.2017.109814
  8. Browne, M. P., Stafford, S., O’Brien, M., Nolan, H., Berner, N. C., Duesberg, G. S. et. al. (2016). The goldilocks electrolyte: examining the performance of iron/nickel oxide thin films as catalysts for electrochemical water splitting in various aqueous NaOH solutions. Journal of Materials Chemistry A, 4 (29), 11397–11407. doi: 10.1039/c6ta03903k
  9. Oliveira, V. L., Morais, C., Servat, K., Napporn, T. W., Tremiliosi-Filho, G., Kokoh, K. B. (2013). Glycerol oxidation on nickel based nanocatalysts in alkaline medium – Identification of the reaction products. Journal of Electroanalytical Chemistry, 703, 56–62. doi: 10.1016/j.jelechem.2013.05.021
  10. Solovov, V., Kovalenko, V., Nikolenko, N., Kotok, V., Vlasova, E. (2017). Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 16–22. doi: 10.15587/1729-4061.2017.90873
  11. Barakat, N. A. M., Yassin, M. A., Al-Mubaddel, F. S., Amen, M. T. (2018). New electrooxidation characteristic for Ni-based electrodes for wide application in methanol fuel cells. Applied Catalysis A: General, 555, 148–154. doi: 10.1016/j.apcata.2018.02.016
  12. Brisse, R., Faddoul, R., Bourgeteau, T., Tondelier, D., Leroy, J., Campidelli, S. et. al. (2017). Inkjet Printing NiO-Based p-Type Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 9 (3), 2369–2377. doi: 10.1021/acsami.6b12912
  13. Calderón, J. A., Jiménez, J. P., Zuleta, A. A. (2016). Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH) 2 -ceramic nanoparticle composite coatings. Surface and Coatings Technology, 304, 167–178. doi: 10.1016/j.surfcoat.2016.04.063
  14. Ramesh, T. N., Jayashree, R. S., Kamath, P. V., Rodrigues, S., Shukla, A. K. (2002). Effect of lightweight supports on specific discharge capacity of β-nickel hydroxide. Journal of Power Sources, 104 (2), 295–298. doi: 10.1016/s0378-7753(01)00919-3
  15. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2014). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792–20140792. doi: 10.1098/rspa.2014.0792
  16. Srinivasan, V., Cornilsen, B. C., Weidner, J. W. (2004). A nonstoichiometric structural model to characterize changes in the nickel hydroxide electrode during cycling. Journal of Solid State Electrochemistry, 9 (2), 61–76. doi: 10.1007/s10008-004-0525-x
  17. Young, K.-H., Wang, L., Yan, S., Liao, X., Meng, T., Shen, H., Mays, W. (2017). Fabrications of High-Capacity Alpha-Ni(OH)2. Batteries, 3 (4), 6. doi: 10.3390/batteries3010006
  18. Wehrens-Dijksma, M., Notten, P. H. L. (2006). Electrochemical Quartz Microbalance characterization of Ni(OH)2-based thin film electrodes. Electrochimica Acta, 51 (18), 3609–3621. doi: 10.1016/j.electacta.2005.10.022
  19. Ramesh, T. N., Kamath, P. V. (2006). Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 156 (2), 655–661. doi: 10.1016/j.jpowsour.2005.05.050
  20. Cornilsen, B. C., Karjala, P. J., Loyselle, P. L. (1988). Structural models for nickel electrode active mass. Journal of Power Sources, 22 (3-4), 351–357. doi: 10.1016/0378-7753(88)80029-6
  21. Cornilsen, B. C., Shan, X., Loyselle, P. L. (1990). Structural comparison of nickel electrodes and precursor phases. Journal of Power Sources, 29 (3-4), 453–466. doi: 10.1016/0378-7753(90)85018-8
  22. Casas-Cabanas, M., Canales-Vázquez, J., Rodríguez-Carvajal, J., Palacín, M. R. (2007). Deciphering the Structural Transformations during Nickel Oxyhydroxide Electrode Operation. Journal of the American Chemical Society, 129 (18), 5840–5842. doi: 10.1021/ja068433a
  23. Van der Ven, A., Morgan, D., Meng, Y. S., Ceder, G. (2006). Phase Stability of Nickel Hydroxides and Oxyhydroxides. Journal of The Electrochemical Society, 153 (2), A210. doi: 10.1149/1.2138572
  24. Tessier, C., Faure, C., Guerlou-Demourgues, L., Denage, C., Nabias, G., Delmas, C. (2002). Electrochemical Study of Zinc-Substituted Nickel Hydroxide. Journal of The Electrochemical Society, 149 (9), A1136. doi: 10.1149/1.1495496
  25. Jayashree, R. S., Vishnu Kamath, P. (2001). Supperession of the α → β nickel hydroxide transformation in concentrated alkali: Role of dissolved cations. Journal of Applied Electrochemistry, 31 (12), 1315–1320. doi: 10.1023/a:1013876006707
  26. Pralong, V., Delahaye-Vidal, A., Beaudoin, B., Leriche, J.-B., Tarascon, J.-M. (2000). Electrochemical Behavior of Cobalt Hydroxide Used as Additive in the Nickel Hydroxide Electrode. Journal of The Electrochemical Society, 147 (4), 1306. doi: 10.1149/1.1393355
  27. Yunchang, D., Jiongliang, Y., Zhaorong, C. (1997). Cyclic voltammetry response of coprecipitated Ni(OH)2 electrode in 5 M KOH solution. Journal of Power Sources, 69 (1-2), 47–54. doi: 10.1016/s0378-7753(97)02565-2
  28. Kotok, V. A., Kozel, N. D., Kovalenko, V. L. et. al. (2007). Nickel hydroxide ageing in different medias and its influence on electrochemical behavior in composition nickel electrode. 8th Advanced batteries and accumulators – ABA-2007. Brno, 202–206.
  29. Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: 10.15587/1729-4061.2017.95699
  30. Barnard, R., Randell, C. F. (1983). Studies concerning charged nickel hydroxide electrodes: Part V. Voltammetric behaviour of electrodes containing β-Ni(OH)2. Journal of Power Sources, 9 (2), 185–204. doi: 10.1016/0378-7753(83)80032-9
  31. Wang, H., Tang, Z., Liu, Y., Lee, C. (2009). Synthesis and behavior of Al-stabilized α-Ni(OH)2. Transactions of Nonferrous Metals Society of China, 19 (1), 170–175. doi: 10.1016/s1003-6326(08)60247-2

Downloads

Published

2018-04-03

How to Cite

Kotok, V., & Kovalenko, V. (2018). Definition of the aging process parameters for nickel hydroxide in the alkaline medium. Eastern-European Journal of Enterprise Technologies, 2(12 (92), 54–60. https://doi.org/10.15587/1729-4061.2018.127764

Issue

Section

Materials Science