Development of methods for estimating the environmental risk of degradation of the surface water state

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.127829

Keywords:

water protection strategy, ecological risk, climate change, rational use of water, river basin

Abstract

We presented three new methods for assessment of the environmental risk of deterioration of a surface water state. We defined the ecological risk of deterioration of surface water at the state level as an addition of the integrated parameter of the state of surface waters and the integral index of anthropogenic loading. We used the official information of the National Report on the state of the environment of Ukraine to calculate the mentioned indicators. We developed classifications of anthropogenic loading on aquatic ecosystems and ecological risk of deterioration of water ecosystems. The assessment of the ecological risk of deterioration of surface water state in Ukraine showed that there are watercourses of the Siversky Donets river basin in the most dangerous state. A base of the methodology for assessment of the risk of water ecosystem well-being disruption is the determination of all parameters of the state of quality of surface waters that exceed the ecological standards using the probit-regression model. The process of determining ecological risk for watercourses of the Siversky Donets river basin in Kharkiv region showed a high level of danger to the well-being of the water ecosystem of the Udi river. We obtained the forecast of climatic changes by parameters of temperature and volumes of precipitation in Kharkiv region. We investigated the dynamics of wastewater discharge to the Udi river for the period from 1992 to 2016. The study on an influence of natural and anthropogenic factors on the ecological state of the Udi river revealed that the impact of wastewater discharge with a correlation coefficient of 0.747 is a significant factor. The application of a new methodology for assessment of the risk of degradation processes made it possible to determine a list of small rivers in Kharkiv region, which require implementation of measures based on the analysis of water use efficiency, taking into consideration landscape and ecological features of a catchment area. We proposed an algorithm for the improvement of water protection strategy based on determining the ecological risk of deterioration of the condition of surface water at the state, regional and local levels. The improvement of water preservation strategy aims at introduction of an integrated interactive surface water quality management.

Author Biographies

Olga Rybalova, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Labour Protection and technogenic and ecological safety

Sergey Artemiev, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Labour Protection and technogenic and ecological safety

Maryna Sarapina, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Labour Protection and technogenic and ecological safety

Bohdan Tsymbal, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Department of Labour Protection and technogenic and ecological safety

Anna Bakharevа, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of occupational safety and environmental

Oleksii Shestopalov, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of chemical technique and industrial ecology

Olesya Filenko, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of chemical technique and industrial ecology

References

  1. Brasoveanu, F., Petru, A., Brezeanu, L. (2012). European policy concerning the protection of the quality of the environmental factor – water. Challenges of the Knowledge Society, 2, 1058–1063.
  2. Bernardini, F. (2007). A Modern Approach to Water Management: The UNECE Protocol on Water and Health. Law, Environment and Development Journal, 3 (2), 234–243.
  3. Tecuci, I., Marinela, M. (2014). The assessment of hydromorphological status of Romanian rivers. Aerul şi Apa: Componente ale Mediului, 78–85.
  4. EU Water Framework Directive 2000/60 EU. Definitions of Main Terms (2006). Kyiv, 240.
  5. Loboichenko, V. M., Tishakova, T. S., Vasyukov, A. E. (2016). Application of direct coulometry for rapid assessment of water quality in Krasno-Oskol Reservoir (Kharkiv Region, Ukraine). Der Pharma Chemica, 8 (19), 27–34.
  6. Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation, 22 (3), 1171–1176.
  7. Fonogea, S.-F., Gligor, V., Vescan, I. (2010). Uniform Transnational Assessment of the Environmental Indices from the Romanian Catchment Area of the Tisa River. Romanian Review of Regional Studies, 6 (2), 31–40.
  8. Bajcetic, M., Brnjas, Z., Draskovic, B. (2016). Economic efficiency of water protection within environmentally friendly and integrated water resources management. International Review, 1-2, 82–90. doi: 10.5937/intrev1602082b
  9. Vambol, S., Vambol, V., Kondratenko, O., Suchikova, Y., Hurenko, O. (2017). Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies, 3 (10 (87)), 63–73. doi: 10.15587/1729-4061.2017.102314
  10. Vambol, S., Vambol, V., Sychikova, Y., Deyneko, N. (2017). Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle. Eastern-European Journal of Enterprise Technologies, 1 (10 (85)), 27–36. doi: 10.15587/1729-4061.2017.85847
  11. Cornea, T. M., Dima, M., Roca, D. (2011). Climate change impacts on water resources. Aerul şi Apa: Componente ale Mediului, 425–433.
  12. Kim, H., Jang, C., Kim, S. (2016). Conjunctive operation of river facilities for integrated water resources management in Korea. Proceedings of the International Association of Hydrological Sciences, 374, 93–99. doi: 10.5194/piahs-374-93-2016
  13. Green, O. O., Garmestani, A. S., van Rijswick, H. F. M. W., Keessen, A. M. (2013). EU Water Governance: Striking the Right Balance between Regulatory Flexibility and Enforcement? Ecology and Society, 18 (2). doi: 10.5751/es-05357-180210
  14. Hou, Y., Zhang, M., Meng, Z., Liu, S., Sun, P., Yang, T. (2018). Assessing the Impact of Forest Change and Climate Variability on Dry Season Runoff by an Improved Single Watershed Approach: A Comparative Study in Two Large Watersheds, China. Forests, 9 (1), 46. doi: 10.3390/f9010046
  15. Merem, E. C., Yerramilli, S., Twumasi, Y. A., Wesley, J. M., Robinson, B., Richardson, C. (2011). The Applications of GIS in the Analysis of the Impacts of Human Activities on South Texas Watersheds. International Journal of Environmental Research and Public Health, 8 (6), 2418–2446. doi: 10.3390/ijerph8062418
  16. Prinz, D., Juliani, A., Brontowiyono, W. (2009). Future water management problems in asian megacities. Jurnal Sains &Teknologi Lingkungan, 1 (1), 01–16. doi: 10.20885/jstl.vol1.iss1.art1
  17. Duarte, C. G., Malheiros, T. F., Grisotto, L. E. G., Ávila, R. D. (2010). Legislation and water management of water source areas of São Paulo Metropolitan Region, Brazil. Ambiente e Agua – An Interdisciplinary Journal of Applied Science, 5 (3), 245–257. doi: 10.4136/ambi-agua.166
  18. Withanachchi, S., Ghambashidze, G., Kunchulia, I., Urushadze, T., Ploeger, A. (2018). A Paradigm Shift in Water Quality Governance in a Transitional Context: A Critical Study about the Empowerment of Local Governance in Georgia. Water, 10 (2), 98. doi: 10.3390/w10020098
  19. / Romanenko, V. D., Zhukynskyi, V. M., Oksiiuk, O. P. et. al. (1998). Metodyka ekolohichnoi otsinky yakosti poverkhnevykh vod za vidpovidnymy katehoriyamy. Kyiv: Symvol–T, 28.
  20. Rybalova, O., Artemiev, S. (2017). Development of a procedure for assessing the environmental risk of the surface water status deterioration. Eastern-European Journal of Enterprise Technologies, 5 (10 (89)), 67–76. doi: 10.15587/1729-4061.2017.112211
  21. Vasenko, O. H., Korobkova, H. V., Rybalova, O. V. (2017). Vyznachennia ekolohichnykh normatyviv yakosti poverkhnevykh vod z urakhuvanniam prohnoznykh modelei ta rehionalnykh osoblyvostei. Сolloquium-journal, 2, 16–25.
  22. Hrytsenko, A. V., Vasenko, O. H., Vernichenko, H. A. et. al. (2012). Metodyka ekolohichnoi otsinky yakosti poverkhnevykh vod za vidpovidnymy katehoriyamy. Kharkiv: UkrNDIEP, 37. Available at: http://www.niiep.kharkov.ua/sites/default/files/metodika_2012_14_0.doc
  23. Rybalova, O. V., Anisimova, S. V. (2003). Noviy podhod k opredeleniyu kompleksa prirodoohrannyh meropriyatiy na osnove issledovaniya osobennostey ekosistem malyh rek. Visn. Mizhnar. Slovianskoho un-tu, 6 (2), 15–18.
  24. Rybalova, O. V., Anisimova, S. V., Poddashkin, O. V. (2003). Otsinka spriamovanosti protsesiv stanu ekosystem malykh richok. Visn. Mezhdunar. Slavianskoho un-ta, VI (1), 12–16.
  25. Byalovich, Yu. P. (1972). Normativy optimal'noy lesistosti ravninnoy chasti USSR. Lesovodstvo i agrolesomelioraciya, 28, 54–65.
  26. Vasenko, A., Rybalova, O., Kozlovskaya, O. (2016). A study of significant factors affecting the quality of water in the Oskil River (Ukraine). Eastern-European Journal of Enterprise Technologies, 3 (10 (81)), 48–55. doi: 10.15587/1729-4061.2016.72415
  27. Vasenko, O. H., Rybalova, O. V., Artemiev, S. R. et. al. (2015). Intehralni ta kompleksni otsinky stanu navkolyshnoho pryrodnoho seredovyshcha. Kharkiv: NUHZU, 419.

Downloads

Published

2018-04-04

How to Cite

Rybalova, O., Artemiev, S., Sarapina, M., Tsymbal, B., Bakharevа A., Shestopalov, O., & Filenko, O. (2018). Development of methods for estimating the environmental risk of degradation of the surface water state. Eastern-European Journal of Enterprise Technologies, 2(10 (92), 4–17. https://doi.org/10.15587/1729-4061.2018.127829