Determining electrical losses of the traction drive of electric train based on a synchronous motor with excitation from permanent magnets

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.127936

Keywords:

traction drive, synchronous motor with excitation from permanent magnets, electric losses

Abstract

We have studied a traction drive based on the synchronous motor with excitation from permanent magnets for its electrical losses. A simulation model of the traction drive is synthesized, which employs the algorithm of a space-vector PWM. A special feature of the model is the application of parameters of actual IGBT-transistors and the possibility for obtaining instantaneous values of electric losses in transistors and snubbers of the inverter under different modes of operation. We have devised a procedure for calculating electric losses in the traction engine based on the shape of phase currents, geometrical and electrical parameters of the engine. Simulation of the traction drive and calculation of losses in the traction engine is integrated, which makes it possible to account for the impact of the inverter and engine on each other.

We have simulated work of the reducer-free traction drive based on a synchronous motor with excitation from permanent magnets with a capacity of 80 kW. The dependences were constructed for losses in the traction inverter and engine on the clock frequency of a space-vector PWM and motion speed.

The proposed procedure makes it possible to quantify the magnitude of electric losses in the traction drive elements depending on the types of transistors applied, clock frequency of the inverter, and parameters of the engine. This enables the optimization of the traction drive for the criterion of maximum performance efficiency, as well as thermal calculation of the elements of the drive.

Author Biographies

Borys Liubarskyi, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Electrical transport and diesel locomotives construction

Aleksandr Demydov, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Senior Lecturer

Department of Electrical transport and diesel locomotives construction

Bagish Yeritsyan, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Department of Electrical transport and diesel locomotives construction

Ramil Nuriiev, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Postgraduate student

Department of Electrical transport and diesel locomotives construction

Dmytro Iakunin, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Electrical transport and diesel locomotives construction

References

  1. Energy Efficiency and its contribution to energy security and the 2030 Framework for climate and energy policy. Communication from the commission to the European Parliament and the Council (2014). Brussels, 17. Available at: https://ec.europa.eu/energy/sites/ener/files/documents/2014_eec_communication_adopted_0.pdf
  2. Petrenko, A. N., Liubarskiy, B. G., Pliugin, V. E. (2017). Determination of railway rolling stock optimal movement modes. Electrical Engineering & Electromechanics, 6, 27–31. doi: 10.20998/2074-272x.2017.6.04
  3. Liubarskyi, B., Petrenko, А., Shaida, V., Maslii, A. (2017). Analysis of optimal operating modes of the induction traction drives for establishing a control algorithm over a semiconductor transducer. Eastern-European Journal of Enterprise Technologies, 4 (8 (88)), 65–72. doi: 10.15587/1729-4061.2017.109179
  4. Liubarskyi, B., Petrenko, О., Iakunin, D., Dubinina, O. (2017). Optimization of thermal modes and cooling systems of the induction traction engines of trams. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 59–67. doi: 10.15587/1729-4061.2017.102236
  5. Buriakovskyi, S., Babaiev, M., Liubarskyi, B., Maslii, A., Karpenko, N., Pomazan, D. et. al. (2018). Quality assessment of control over the traction valve-inductor drive of a hybrid diesel locomotive. Eastern-European Journal of Enterprise Technologies, 1 (2 (91)), 68–75. doi: 10.15587/1729-4061.2018.122422
  6. Lyubarskiy, B. G., Zyuzin, D. Yu., Demidov, A. V., Glebova, T. V., Ryabov, E. S. (2007). Cifrovoe modelirovanie tyagovogo privoda na osnove sinhronnogo tyagovogo dvigatelya s vozbuzhdeniem ot postoyannyh magnitov. Visnyk Natsionalnoho tekhnichnoho universytetu “Kharkivskyi politekhnichnyi instytut”, 37, 111–115.
  7. Nahodkin, M. D. (Ed.) (1976). Proektirovanie tyagovyh elektricheskih mashin. Moscow: Transport, 624.
  8. General Considerations for IGBT and Intelligent Power Modules (1998). Mitsubish Application Notes. Available at: http://www.mitsubishielectric.com/semiconductors/files/manuals/powermos3_0.pdf
  9. Zhang, Y., Sobhani, S., Chokhawala, R. Snubber considerations for IGBT applications. International Rectifier. Available at: https://www.infineon.com/dgdl/tpap-5.pdf?fileId=5546d462533600a401535748b5103fe8
  10. Ivahno, V. V., Zamaruev, V. V., Il'ina, O. V. (2014). Vybor i raschet silovyh poluprovodnikovyh priborov poluprovodnikovogo preobrazovatelya elektricheskoy energii. Kharkiv, 72.
  11. Golubenko, A. L., Novikov, V. M., Basov, G. G., Tulup, V. A., Tasang, E. H. (2011). Raschet tyagovo-energeticheskih harakteristik teplovozov. Lugansk: iz-vo «Noulidzh», 423.
  12. Husevskyi, Yu. I., Lutai, S. M., Mastepan, A. H., Pashynska, Yu. V. (2015). Dvorivnevyi invertor z pokrashchenoiu formoiu vykhidnoi napruhy. Zbirnyk naukovykh prats Ukrainskoho derzhavnoho universytetu zaliznychnoho transportu, 153, 12–20.
  13. Lee, J.-G., Nam, K.-H., Lee, S.-H., Choi, S.-H., Kwon, S.-W. (2009). A Lookup Table Based Loss Minimizing Control for FCEV Permanent Magnet Synchronous Motors. Journal of Electrical Engineering and Technology, 4 (2), 201–210. doi: 10.5370/jeet.2009.4.2.201
  14. Guo, Q., Zhang, C., Li, L., Zhang, J., Wang, M. (2017). Maximum Efficiency Control of Permanent-Magnet Synchronous Machines for Electric Vehicles. Energy Procedia, 105, 2267–2272. doi: 10.1016/j.egypro.2017.03.650
  15. Guo, Q., Zhang, C., Li, L., Zhang, J., Wang, M. (2017). Design and Implementation of a Loss Optimization Control for Electric Vehicle In-Wheel Permanent-Magnet Synchronous Motor Direct Drive System. Energy Procedia, 105, 2253–2259. doi: 10.1016/j.egypro.2017.03.644
  16. Zhang, Z., Ge, X., Tian, Z., Zhang, X., Tang, Q., Feng, X. (2018). A PWM for Minimum Current Harmonic Distortion in Metro Traction PMSM With Saliency Ratio and Load Angle Constrains. IEEE Transactions on Power Electronics, 33 (5), 4498–4511. doi: 10.1109/tpel.2017.2723480
  17. Cavallaro, C., DiTommaso, A. O., Miceli, R., Raciti, A., Galluzzo, G. R., Trapanese, M. (2005). Efficiency Enhancement of Permanent-Magnet Synchronous Motor Drives by Online Loss Minimization Approaches. IEEE Transactions on Industrial Electronics, 52 (4), 1153–1160. doi: 10.1109/tie.2005.851595
  18. Maswood, A. I. (2008). A switching loss study in SPWM IGBT inverter. 2008 IEEE 2nd International Power and Energy Conference. doi: 10.1109/pecon.2008.4762548
  19. Zhang, C., Guo, Q., Li, L., Wang, M., Wang, T. (2017). System Efficiency Improvement for Electric Vehicles Adopting a Permanent Magnet Synchronous Motor Direct Drive System. Energies, 10 (12), 2030. doi: 10.3390/en10122030
  20. Sato, D., Itoh, J. (2013). Total loss comparison of inverter circuit topologies with interior permanent magnet synchronous motor drive system. 2013 IEEE ECCE Asia Downunder. doi: 10.1109/ecce-asia.2013.6579149
  21. Dilshad, M. R., Ashok, S., Vijayan, V., Pathiyil, P. (2016). An energy loss model based temperature estimation for Permanent Magnet Synchronous Motor (PMSM). 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). doi: 10.1109/aeeicb.2016.7538266
  22. Zhou, Z., Khanniche, M. S., Igic, S., Towers, S. M., Mawby, P. A. (2005). Power Loss Calculation and Thermal Modelling for a Three Phase Inverter Drive System. J. Electrical Systems, 1-4, 33–46.
  23. German-Galkin, S. G. (2008). Matlab & Simulink. Proektirovanie mekhatronnyh sistem na PK. Sankr-Peterburg: KORONA-Vek, 368.
  24. Pravila tyagovyh raschetov dlya poezdnoy raboty (1985). Moscow: Transport, 287.
  25. Gel'man, M. V., Dudkin, M. M., Preobrazhenskiy, K. A. (2009). Preobrazovatel'naya tekhnika. Chelyabinsk: Izdatel'skiy centr YuUrGU, 425.
  26. Kozachenko, V. F. (1999). Osnovnye tendencii razvitiya vstroennyh sistem upravleniya dvigatelyami i trebovaniya k mikrokontrolleram. CHIP NEWS, 1 (34), 2–9.
  27. MBI400VD-120-50 IGBT module (V series) 1200V/400A/2 in one package. Fuji Electric. Available at: http://www.fujielectric-europe.com/downloads/2MBI400VD-120-50_1734273.PDF
  28. Meeker, D. (2015). Finite Element Method Magnetics Version 4.2. Available at: http://www.femm.info/Archives/doc/manual42.pdf

Downloads

Published

2018-04-04

How to Cite

Liubarskyi, B., Demydov, A., Yeritsyan, B., Nuriiev, R., & Iakunin, D. (2018). Determining electrical losses of the traction drive of electric train based on a synchronous motor with excitation from permanent magnets. Eastern-European Journal of Enterprise Technologies, 2(9 (92), 29–39. https://doi.org/10.15587/1729-4061.2018.127936

Issue

Section

Information and controlling system