Study of the influence of oxidizing parameters on the composition and morphology of Al2O3•CoOx coatings on AL25 alloy

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.128457

Keywords:

piston silumin, AL25, plasma-electrolytic oxidation, oxide coating, surface morphology

Abstract

The influence of operating parameters of plasma-electrolytic oxidation in diphosphate cobalt-containing electrolyte on the process of formation of oxide coatings on alumosilicon alloy AL25 (GOST 1583) was studied. It was shown that inclusion of cobalt into the composition of surface oxide layers leads to a change of morphology and topography of the surface. Variation of current density and PEO time allows flexible control of the process of incorporation of the catalytic component into the matrix of oxide of basic metal. It was shown that at an increase in oxidation time, cobalt content in the surface oxide layer increases.

The rational mode of plasma-electrolytic treatment of piston alloy in diphosphate electrolyte for obtaining oxide coatings, enriched with cobalt, was substantiated. It is advisable to perform formation of PEO-coatings on AL25 with developed globular-mosaic surface, maximum cobalt content, with minimizing impurities in the range of current densities of 3–5 A/dm2 within 20–40 min. The obtained cobalt-containing oxide coatings can be used in the air and water purification systems, specifically, for intracylinder catalysis of gas emissions of internal combustion engines.

Author Biographies

Ann Karakurkchi, National Technical University «Kharkіv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Researcher

Department of General and Inorganic Chemistry

Mykola Sakhnenko, National Technical University «Kharkіv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Physical Chemistry

Maryna Ved', National Technical University «Kharkіv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of General and Inorganic Chemistry

References

  1. Belov, N. A. (2010). Fazoviy sostav promyshlennyh i perspektivnyh alyuminievyh splavov. Moscow: Izd. dom MISiS, 511.
  2. Okada, A. (2010). Innovative materials for automotive industry. New York: Nova Science Publishers, 147.
  3. Nosov, A. S., Meleshin, V. V., Tovmasyan, A. B., Babich, A. G. (2017). Obzor tekhnologicheskih meropriyatiy, napravlennyh na povyshenie nadezhnosti cilindro-porshnevoy gruppy dvigatelya vnutrennego sgoraniya. Sovremennye materialy, tekhnika i tekhnologii, 3 (11), 80–85.
  4. Dongm H. (Ed.) (2010). Surface Engineering of Light Alloys: Aluminium, Magnesium and Titanium Alloys. Elsevier, 680.
  5. Gupta, P., Tenhundfeld, G., Daigle, E. O., Ryabkov, D. (2007). Electrolytic plasma technology: Science and engineering – An overview. Surface and Coatings Technology, 201 (21), 8746–8760. doi: 10.1016/j.surfcoat.2006.11.023
  6. Ved', M. V. (2017). Synthesis and functional properties of mixed titanium and cobalt oxides. Functional materials, 24 (4), 534–540. doi: 10.15407/fm24.04.534
  7. Xie, H., Cheng, Y., Li, S., Cao, J., Cao, L. (2017). Wear and corrosion resistant coatings on surface of cast A356 aluminum alloy by plasma electrolytic oxidation in moderately concentrated aluminate electrolytes. Transactions of Nonferrous Metals Society of China, 27 (2), 336–351. doi: 10.1016/s1003-6326(17)60038-4
  8. Rudnev, V. S., Lukiyanchuk, I. V., Vasilyeva, M. S., Medkov, M. A., Adigamova, M. V., Sergienko, V. I. (2016). Aluminum- and titanium-supported plasma electrolytic multicomponent coatings with magnetic, catalytic, biocide or biocompatible properties. Surface and Coatings Technology, 307, 1219–1235. doi: 10.1016/j.surfcoat.2016.07.060
  9. Karakurkchi, A., Sakhnenko, M., Ved', M., Horokhivskyi, A., Galak, A. (2017). Study into formation of cobalt-containing PEO-coatings on АК12М2МgN from a pyrophosphate electrolyte. Eastern-European Journal of Enterprise Technologies, 6 (12 (90)), 19–27. doi: 10.15587/1729-4061.2017.118028
  10. Krishtal, M. M. (2009). Oxide Layer Formation by Micro-Arc Oxidation on Structurally Modified Al-Si Alloys and Applications for Large-Sized Articles Manufacturing. Advanced Materials Research, 59, 204–208. doi: 10.4028/www.scientific.net/amr.59.204
  11. Xu, F., Xia, Y., Li, G. (2009). The mechanism of PEO process on Al–Si alloys with the bulk primary silicon. Applied Surface Science, 255 (23), 9531–9538. doi: 10.1016/j.apsusc.2009.07.090
  12. Dehnavi, V., Luan, B. L., Liu, X. Y., Shoesmith, D. W., Rohani, S. (2013). Production of ceramic coatings on AA6061 aluminium alloy using plasma electrolytic oxidation. Materials Science and Technology (MS&T 2013) Conference. Montreal, 2247–2254.
  13. Wang, P., Li, J. P., Guo, Y. C., Yang, Z., Wang, J. L. (2016). Ceramic coating formation on high Si containing Al alloy by PEO process. Surface Engineering, 32 (6), 428–434. doi: 10.1179/1743294415y.0000000003
  14. Dudareva, N. Y., Abramova, M. M. (2016). The Structure of Plasma-Electrolytic Coating Formed on Al–Si alloys by the Micro-Arc Oxidation Method. Protection of Metals and Physical Chemistry of Surfaces, 52 (1), 128–132. doi: 10.1134/s2070205116010093
  15. Dudareva, N., Kal’shchikov, R., Dombrovskii, O., Butusov, I. (2015). Experimentally Studied Thermal Piston-head State of the Internal-Combustion Engine with a Thermal Layer Formed by Micro-Arc Oxidation Method. Science and Education of the Bauman MSTU, 5, 115–125. doi: 10.7463/0515.0774148
  16. Ayday, A., Durman, M. (2015). Growth Characteristics of Plasma Electrolytic Oxidation Coatings on Aluminum Alloys. Acta Physica Polonica A, 127 (4), 886–887. doi: 10.12693/aphyspola.127.886
  17. Rogov, A. B., Slonova, A. I., Shayapov, V. R. (2012). Peculiarities of iron-containing microplasma coating deposition on aluminum in homogeneous electrolyte. Applied Surface Science, 261, 647–652. doi: 10.1016/j.apsusc.2012.08.075
  18. Krishtal, M. M., Ivashin, P. V., Kolomiec, P. V. (2012). Ispol'zovanie tekhnologii mikrodugovogo oksidirovaniya pri razrabotke DVS s blokom cilindrov iz alyuminievogo splava. Izvestiya Samarskogo nauchnogo centra Rossiyskoy akademii nauk, 12 (4), 242–246.
  19. Karakurkchi, A., Sakhnenko, M., Ved', M., Galak, A., Petrukhin, S. (2017). Application of oxide-metallic catalysts on valve metals for ecological catalysis. Eastern-European Journal of Enterprise Technologies, 5 (10 (89)), 12–18. doi: 10.15587/1729-4061.2017.109885
  20. Boguta, D. L., Rudnev, V. S., Yarovaya, T. P., Kaidalova, T. A., Gordienko, P. S. (2002). On Composition of Anodic-Spark Coatings Formed on Aluminum Alloys in Electrolytes with Polyphosphate Complexes of Metals. Russian Journal of Applied Chemistry, 75 (10), 1605–1608. doi: 10.1023/a:1022263331315
  21. Rudnev, V. S. (2008). Multiphase anodic layers and prospects of their application. Protection of Metals, 44 (3), 263–272. doi: 10.1134/s0033173208030089
  22. Sakhnenko, N. D., Ved’, M. V., Androshchuk, D. S., Korniy, S. A. (2016). Formation of coatings of mixed aluminum and manganese oxides on the AL25 alloy. Surface Engineering and Applied Electrochemistry, 52 (2), 145–151. doi: 10.3103/s1068375516020113
  23. Rogov, A. B. (2015). Plasma electrolytic oxidation of A1050 aluminium alloy in homogeneous silicate-alkaline electrolytes with edta 4− complexes of Fe, Co, Ni, Cu, La and Ba under alternating polarization conditions. Materials Chemistry and Physics, 167, 136–144. doi: 10.1016/j.matchemphys.2015.10.020
  24. Rudnev, V. S., Vasil’eva, M. S., Bondarenko, M. V., Kuryavyi, V. G., Kondrikov, N. B. (2007). Cobalt-containing layers on titanium. Inorganic Materials, 43 (6), 642–644. doi: 10.1134/s0020168507060167
  25. Vasilyeva, M. S., Rudnev, V. S., Ustinov, A. Y., Korotenko, I. A., Modin, E. B., Voitenko, O. V. (2010). Cobalt-containing oxide layers on titanium, their composition, morphology, and catalytic activity in CO oxidation. Applied Surface Science, 257 (4), 1239–1246. doi: 10.1016/j.apsusc.2010.08.031
  26. Rudnev, V. S., Morozova, V. P., Lukiyanchuk, I. V., Adigamova, M. V., Tkachenko, I. A., Ustinov, A. Y. et. al. (2014). Structures and magnetic properties of iron- and cobalt-containing oxide coatings on an aluminum alloy formed in electrolytes via plasma electrolytic oxidation. Russian Journal of Physical Chemistry A, 88 (5), 863–869. doi: 10.1134/s0036024414050264
  27. Sakhnenko, N., Ved', M., Karakurkchi, A., Galak, A. (2016). A study of synthesis and properties of manganese-containing oxide coatings on alloy VT1-0. Eastern-European Journal of Enterprise Technologies, 3 (5 (81)), 37–43. doi: 10.15587/1729-4061.2016.69390
  28. Ma, C., Lu, Y., Sun, P., Yuan, Y., Jing, X., Zhang, M. (2011). Characterization of plasma electrolytic oxidation coatings formed on Mg–Li alloy in an alkaline polyphosphate electrolyte. Surface and Coatings Technology, 206 (2-3), 287–294. doi: 10.1016/j.surfcoat.2011.07.019
  29. Sakhnenko, N. D., Ved', M. V., Karakurkchi, A. V. (2017). Nanoscale Oxide PEO Coatings Forming from Diphosphate Electrolytes. Springer Proceedings in Physics, 507–531. doi: 10.1007/978-3-319-56422-7_38
  30. Karakurkchi, A. V., Ved’, M. V., Yermolenko, I. Y., Sakhnenko, N. D. (2016). Electrochemical deposition of Fe–Mo–W alloy coatings from citrate electrolyte. Surface Engineering and Applied Electrochemistry, 52 (1), 43–49. doi: 10.3103/s1068375516010087
  31. Rakoch, A. G., Khokhlov, V. V., Bautin, V. A., Lebedeva, N. A., Magurova, Y. V., Bardin, I. V. (2006). Model concepts on the mechanism of microarc oxidation of metal materials and the control over this process. Protection of Metals, 42 (2), 158–169. doi: 10.1134/s003317320602010x
  32. Yar-Mukhamedova, G. S., Ved’, M. V., Karakurkchi, A. V., Sakhnenko, N. D. (2017). Mixed alumina and cobalt containing plasma electrolytic oxide coatings. IOP Conference Series: Materials Science and Engineering, 213, 012020. doi: 10.1088/1757-899x/213/1/012020
  33. Serdechnova, M., Mohedano, M., Bouali, A., Höche, D., Kuznetsov, B., Karpushenkov, S. et. al. (2017). Role of Phase Composition of PEO Coatings on AA2024 for In-Situ LDH Growth. Coatings, 7 (11), 190. doi: 10.3390/coatings7110190
  34. Sakhnenko, M., Karakurkchi, A., Galak, A., Menshov, S., Matykin, O. (2017). Examining the formation and properties of TiO2 oxide coatings with metals of iron triad. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 4–10. doi: 10.15587/1729-4061.2017.97550
  35. Senesi, G. S., Massaro, A. (2016). AFM Applications to the Analysis of Plasma-Treated Surface Growth and Nanocomposite Materials. Current Nanoscience, 12 (2), 202–206. doi: 10.2174/1573413711666150928194029
  36. Ved’, M. V., Sakhnenko, N. D., Karakurkchi, A. V., Myrna, T. Yu. (2017). Functional mixed cobalt and aluminum oxide coatings for environmental safety. Functional Materials, 24 (2), 303–310. doi: 10.15407/fm24.02.303
  37. Parsadanov, I. V., Sakhnenko, N. D., Ved’, M. V., Rykova, I. V., Khyzhniak, V. A., Karakurkchi, A. V., Gorokhivskiy, A. S. (2017). Increasing the efficiency of intra-cylinder catalysis in diesel engines. Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 75–81.

Downloads

Published

2018-04-11

How to Cite

Karakurkchi, A., Sakhnenko, M., & Ved’, M. (2018). Study of the influence of oxidizing parameters on the composition and morphology of Al2O3•CoOx coatings on AL25 alloy. Eastern-European Journal of Enterprise Technologies, 2(12 (92), 11–19. https://doi.org/10.15587/1729-4061.2018.128457

Issue

Section

Materials Science