Development of models and research into tooling for machining centers

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.131778

Keywords:

3D modeling, technological tooling, parameterization, rendering, tool storage, auxiliary tools, rigidity

Abstract

We have constructed three-dimensional solid models for tool storage of the disk type (for 14 instruments) and the chain type for 32 tools, mounted onto the side surface of a machine column. We propose a 3D model of the tool positioner with a hydraulic cylinder that performs an automated tool change. The generated set of models for tooling, in combination with models of tool storage and tool positioners, represents the entire complexity and special features of design and technological preparation of machining processes at machining centers of standard size III and IV.

We have developed models and algorithms for parametric modeling of basic elements of profile cutting tools. Using the built-in parametrizer in the APM Graph module makes it possible to implement a simpler approach to constructing models for unified profiles of tools in order to speed up the process of creating specialized application libraries. We have built analytical models for determining the rigidity of shape-forming machine nodes. Such an approach is most effective for typical circuits of double-support spindles that are equipped with various tooling. In contrast to the generally accepted procedure, the proposed analytical models (static backlogs) provide for obtaining express estimations for the optimum correlation between design parameters of spindle nodes.

Such an approach to research is defined by a tendency toward expanding technological possibilities of machining centers equipped with a constantly changing range of tooling. The emergence of new kinds of industrial tooling must be provided with methods and algorithms that interrelate the stages of constructing models of designs and assessment of their performance for the criterion of rigidity.

Under conditions of machine-tool industry, the toolset proposed in this work is aimed at improving the quality of creating the three-dimensional models of structures, their photorealistic imaging, rapid adaptation to changing conditions and operative estimation of rigidity of the shape-forming nodes. Implementation of the proposed toolset is directed towards improving the competitiveness of the designed projects.

Author Biographies

Oleg Krol, Volodymyr Dahl East Ukrainian National University Tsentralnyi ave., 59-а, Severodonetsk, Ukraine, 93400

PhD, Associate Professor

Department of Machinery Engineering and Applied Mechanics

Volodymyr Sokolov, Volodymyr Dahl East Ukrainian National University Tsentralnyi ave., 59-а, Severodonetsk, Ukraine, 93400

Doctor of Technical Sciences, Professor, Head of Department

Department of Machinery Engineering and Applied Mechanics

References

  1. Kuznetsov, Yu. I., Maslov, A. R., Baykov, A. N. (1990). Osnastka dlya stankov s ChPU [Tooling for CNC machines]. Moscow: Machinostroenie, 510.
  2. Avraamova, T. M., Bushuev, V. V., Gilovoy, L. Ya. et. al.; Bushuev, V. V. (Ed.) (2012). Metallorezhuschie stanki [Metal-cutting machine tools]. Vol. 1. Moscow: Machinostroenie, 608.
  3. Grigorev, S. N., Grechishnikov, V. A., Maslov, A. R. (2012). Instrumentalnyie sistemyi integrirovannyih mashinostroitelnyih proizvodstv [Instrumental systems of integrated machine-building productions]. Moscow: FGBOU VPO MGTU «STANKIN», 194.
  4. Ganin, N. B. (2012). Trehmernoe proektirovanie v KOMPAS-3D [Three-dimensional design in KOMPAS-3D]. Мoscow: DMK, 776.
  5. Krol, O. S. (2015). Metodyi i protseduryi 3D-modelirovaniya metallorezhuschih stankov i instrumentov [Methods and procedures of 3D modeling of metal-cutting machines and tools]. Lugansk: Izd-vo VNU im. V. Dalya, 120.
  6. Li, J., Song, Y., Liu, Y. (2017). Development of post-processing system for three types of five-axis machine tools based on solid model. ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing, 118–132. doi: 10.1115/msec2017-2665
  7. Afsharizand, B., Zhang, X., Newman, S. T., Nassehi, A. (2014). Determination of Machinability Considering Degradation of Accuracy Over Machine Tool Life Cycle. Procedia CIRP, 17, 760–765. doi: 10.1016/j.procir.2014.02.048
  8. Kamnev, A. (2017). C3D Labs predstavlyaet C3D Toolkit 2017. Aktualnyie tehnologii dlya razrabotchikov inzhenernogo PO [C3D Labs presents the C3D Toolkit 2017. Topical technologies for developers of engineering software]. SAPR i grafika, 42–47. Available at: http://c3dlabs.com/source/documents/SiG_05-2017_C3D_Toolkit.pdf
  9. Girschtick, J. (2018). Introducing parametric modeling 2.0. Isicad. Available at: http://isicad.net/articles.php?article_num=19641
  10. Krol, O. S. (2013). Construction of parametric models of belt-drive using АРМ WINMACHINE. Eastern-European Journal of Enterprise Technologies, 2 (7 (62)), 61–63. Available at: http://journals.uran.ua/eejet/article/view/12391/10279
  11. Pritykin, F. N., Shmulenkova, E. E. (2012). Osnovnye elementy SAPR metallorezhushchih instrumentov pri ispol'zovanii parametricheskogo 3D modelirovaniya [Basic elements of CAD of metal-cutting tools using parametric 3D modeling]. Omskiy nauchniy vestnik, 1 (107), 278–282.
  12. Saninskiy, V. A., Ryabova, K. L., Platonov, Yu. N., Osadchenko, E. N. (2013). Vliyanie zhestkosti i geometricheskih parametrov shpindel'nogo uzla pinoli na tochnost' rastachivaniya soosnyh otverstiy [Effect of rigidity and geometric parameters of the spindle pinol assembly on the accuracy of boring of coaxial holes]. Sovremennye problemy nauki i obrazovaniya, 2, 15–21.
  13. Gao, X., Li, B., Hong, J., Guo, J. (2016). Stiffness modeling of machine tools based on machining space analysis. The International Journal of Advanced Manufacturing Technology, 86 (5-8), 2093–2106. doi: 10.1007/s00170-015-8336-z
  14. Ugrinov, P. (2011). Zhestkost obrabatyivayuschih tsentrov srednego tiporazmera [Rigidity of machining centers of medium size]. Avtomatizatsiya i upravlenie v mashinostroenii, 5, 43–47.
  15. Krol, О., Sukhorutchenko, I. (2014). Solid modeling of machining centre SVM1F4 in KOMPAS 3D. Eastern-European Journal of Enterprise Technologies, 4 (7 (70)), 13–18. doi: 10.15587/1729-4061.2014.26250
  16. Krol, O., Juravlev, V. (2013). Modeling of spindle for turret of the specialized tool type SF16MF3. TEKA Commision of Motorization and Energetic in Agriculture, 13 (4), 141–147.
  17. Shelofast, V. V., Chugunova, T. B. (2004). Osnovyi proektirovaniya mashin. Primeryi resheniya zadach [Fundamentals of machine design. Examples of problem solving]. Мoscow: APM, 472.
  18. Zamriy, A. A. (2004). Proektirovanie i raschet metodom konechnyih elementov trehmernyih konstruktsiy v srede ARM Structure 3D [Design and calculation of the finite element method of three-dimensional structures in the ARM framework Structure 3D]. Moscow: APM, 208.
  19. Krol, O. S. (2012). Parametricheskoe modelirovanie metallorezhuschih stankov i instrumentov [Parametric modeling of metal-cutting machines and tools]. Lugansk: Izd-vo VNU im. V. Dalya, 116.
  20. Kozhevnikov, D. V., Grechishnikov, V. A., Kirsanov, S. V., Grigorev, S. N., Shirtladze, A. G. (2014). Rezhuschiy instrument. Moscow: Mashinostroenie, 520.
  21. Rozinskiy, S., Shanin, D., Grigorev, S. (2011). Parametricheskie vozmozhnosti graficheskogo modulya ARM Graph sistemyi ARM WinMachine [Parametric capabilities of the graphical module APM Graph for APM WinMachine]. SAPR i grafika, 11, 37–40.
  22. Balmont, V. B., Gorelik, I. G., Figatner, A. M. (1987). Raschetyi vyisokoskorostnyih shpindelnyih uzlov [Calculations of high-speed spindle nodes]. Moscow: VNIITEMR, 52.
  23. Krol, O. S, Shevchenko, S. V., Sokolov, V. І. (2011). Proektuvannia metalorizalnykh verstativ u seredovyshchi ARM WinMachine [Designing metal-cutting machine tools in the APM WinMachine environment]. Luhansk: Vyd-vo SNU im. V. Dalia, 386.
  24. Pronikov, A. S., Borisov, E. I., Bushuev, V. V. et. al. (1995). Proektirovanie metallorezhuschih stankov i stanochnyih system [Designing of metal-cutting machines and machine tools] Vol. 2. Ch. 1. Raschet i konstruirovanie uzlov i elementov stankov [Calculation and design of units and machine elements]. Мoscow: Mashinostroenie, 371.
  25. Loktev, D. (2002). Shpindelnyie uzlyi [Spindle nodes]. Struzhka, 1, 12–15.
  26. Shevchenko, S., Mukhovaty, A., Krol, O. (2016). Geometric Aspects of Modifications of Tapered Roller Bearings. Procedia Engineering, 150, 1107–1112. doi: 10.1016/j.proeng.2016.07.221
  27. Shevchenko, S., Mukhovaty, A., Krol, O. (2017). Gear Clutch with Modified Tooth Profiles. Procedia Engineering, 206, 979–984. doi: 10.1016/j.proeng.2017.10.581
  28. Sokolov, V., Rasskazova, Y. (2016). Automation of control processes of technological equipment with rotary hydraulic drive. Eastern-European Journal of Enterprise Technologies, 2 (2 (80)), 44–50. doi: 10.15587/1729-4061.2016.63711
  29. Sokolov, V., Krol, O. (2017). Installations Criterion of Deceleration Device in Volumetric Hydraulic Drive. Procedia Engineering, 206, 936–943. doi: 10.1016/j.proeng.2017.10.575
  30. Krol, O. S. (2014). Metody i procedury dinamiki shpindel'nyh uzlov [Methods and procedures for the dynamics of spindle nodes]. Lugansk: Izd-vo VNU im. V. Dalya, 154.

Downloads

Published

2018-05-22

How to Cite

Krol, O., & Sokolov, V. (2018). Development of models and research into tooling for machining centers. Eastern-European Journal of Enterprise Technologies, 3(1 (93), 12–22. https://doi.org/10.15587/1729-4061.2018.131778

Issue

Section

Engineering technological systems