Synthesis of magnetite nanoparticles stabilized by polyvinylpyrrolidone and analysis of their absorption bands

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.132057

Keywords:

nanoparticles, magnetite, plasmon resonance, polyvinylpyrrolidone (PVP), absorption bands, radius of nanoparticles, aggregation resistance

Abstract

We report results of studying the synthesis of magnetite nanoparticles. The formed dispersions were explored with the use of the spectrophotometric method. The spectra of optical absorption of nanomagnetite dispersions were analyzed using the theory of plasmon oscillations. Synthesis of nanoparticles was performed in the aqueous solution and with the use of 3.5 % polyvinylpyrrolidone as dispersed medium. The ratio of salts of ferrum (III)/(II) was 1.5:1. Working concentrations of reactive substances were chosen, which resulted in the formation of stable dispersions of nanoparticles with magnetic properties. It was shown that when changing the amount and the method of introduction of ammonia solution into the system, more stable dispersions of nanoparticles are formed. As a result of the research into surface plasmon resonance of magnetite nanoparticles dispersions, it was found that all synthesized solutions are characterized by a maximum of absorption at the wavelength of 350 nm, however, intensity of absorption bands directly depends on dimensions of the particles. Magnetite nanoparticles, synthesized with the use of 3.5 % polyvinylpyrrolidone (PVP) as dispersed medium, are characterized by existence of three bands at 350 nm, 950 nm, and 1,050 nm. The possible mechanism of stabilization of magnetite nanoparticles in polyvinylpyrrolidone was proposed. In the course of the study, it was found that polyvinylpyrrolidone, on the one hand, contributes to nucleation, and on the other hand, effectively stabilizes nanoparticles.

Author Biographies

Maria Pasichnyk, Mykolaiv National University named after V. O. Sukhomlinsky Nikolska str., 24, Mykolaiv, Ukraine, 54030

PhD, Associate Professor

Department of Chemistry and Biochemistry

Elena Kucher, Mykolaiv National University named after V. O. Sukhomlinsky Nikolska str., 24, Mykolaiv, Ukraine, 54030

PhD, Associate Professor

Department of laboratory diagnostics

Lyudmila Hyrlya, Mykolaiv National Agrarian University Georgiya Gongadze str., 9, Mykolaiv, Ukraine, 54020

PhD, Associate Professor

Department of Soil Science and Agrochemistry

References

  1. Faraji, M., Yamini, Y., Rezaee, M. (2010). Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. Journal of the Iranian Chemical Society, 7 (1), 1–37. doi: 10.1007/bf03245856
  2. Weissleder, R., Stark, D., Engelstad, B., Bacon, B., Compton, C., White, D. et. al. (1989). Superparamagnetic iron oxide: pharmacokinetics and toxicity. American Journal of Roentgenology, 152 (1), 167–173. doi: 10.2214/ajr.152.1.167
  3. Elmore, W. C. (1938). Ferromagnetic Colloid for Studying Magnetic Structures. Physical Review, 54 (4), 309–310. doi: 10.1103/physrev.54.309
  4. Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics, 17 (2), 1247–1248. doi: 10.1109/tmag.1981.1061188
  5. Baranov, D. A., Gubin, S. P. (2009). Magnitnye nanochasticy: dostizheniya i problemy himicheskogo sinteza. Nanosistemy, 1 (1-2), 129–147.
  6. Bandhu, A., Mukherjee, S., Acharya, S., Modak, S., Brahma, S. K., Das, D., Chakrabarti, P. K. (2009). Dynamic magnetic behaviour and Mössbauer effect measurements of magnetite nanoparticles prepared by a new technique in the co-precipitation method. Solid State Communications, 149 (41-42), 1790–1794. doi: 10.1016/j.ssc.2009.07.018
  7. Iwasaki, T., Kosaka, K., Yabuuchi, T., Watano, S., Yanagida, T., Kawai, T. (2009). Novel mechanochemical process for synthesis of magnetite nanoparticles using coprecipitation method. Advanced Powder Technology, 20 (6), 521–528. doi: 10.1016/j.apt.2009.06.002
  8. Hu, J., Hu, X., Chen, A., Zhao, S. (2014). Directly aqueous synthesis of well-dispersed superparamagnetic Fe3O4 nanoparticles using ionic liquid-assisted co-precipitation method. Journal of Alloys and Compounds, 603, 1–6. doi: 10.1016/j.jallcom.2014.02.022
  9. Wei, Y., Han, B., Hu, X., Lin, Y., Wang, X., Deng, X. (2012). Synthesis of Fe3O4 Nanoparticles and their Magnetic Properties. Procedia Engineering, 27, 632–637. doi: 10.1016/j.proeng.2011.12.498
  10. Silva, V. A. J., Andrade, P. L., Silva, M. P. C., Bustamante D., A., De Los Santos Valladares, L., Albino Aguiar, J. (2013). Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. Journal of Magnetism and Magnetic Materials, 343, 138–143. doi: 10.1016/j.jmmm.2013.04.062
  11. Semeniuk, N. B., Kostiv, U. V., Dziaman, I. Z., Klym, Yu. V., Skorokhoda, V. Y. (2014). Osoblyvosti oderzhannia nanochastynok sribla u prysutnosti polivinilpirolidonu. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Ser.: Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannia, 787, 440–443. Available at: http://nbuv.gov.ua/UJRN/VNULPX_2014_787_86
  12. Sapir, L., Stanley, C. B., Harries, D. (2016). Properties of Polyvinylpyrrolidone in a Deep Eutectic Solvent. The Journal of Physical Chemistry A, 120 (19), 3253–3259. doi: 10.1021/acs.jpca.5b11927
  13. Klimov, V. V. (2010). Nanoplazmonika. Moscow: Fizmatlit, 480.
  14. Boren, K., Hafmen, D. (1986). Pogloshchenie i rasseyanie sveta malymi chasticami. Moscow: Mir, 664.
  15. Kelly, K. L., Coronado, E., Zhao, L. L., Schatz, G. C. (2003). The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, 107 (3), 668–677. doi: 10.1021/jp026731y
  16. Kreibig, U., Vollmer, M. (1995). Optical properties of metal clusters. Berlin: Springer-Verlag, 535. doi: 10.1007/978-3-662-09109-8
  17. Koczkur, K. M., Mourdikoudis, S., Polavarapu, L., Skrabalak, S. E. (2015). Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Transactions, 44 (41), 17883–17905. doi: 10.1039/c5dt02964c
  18. Yang, C.-C., Wan, C.-C., Wang, Y.-Y. (2006). The Role of Poly(N-vinyl-2-pyrrollidone) in Ag∕Pd Nanoparticles Formation and Its Application to Electroless Deposition. Journal of The Electrochemical Society, 153 (5), J27. doi: 10.1149/1.2176917

Downloads

Published

2018-05-24

How to Cite

Pasichnyk, M., Kucher, E., & Hyrlya, L. (2018). Synthesis of magnetite nanoparticles stabilized by polyvinylpyrrolidone and analysis of their absorption bands. Eastern-European Journal of Enterprise Technologies, 3(6 (93), 26–32. https://doi.org/10.15587/1729-4061.2018.132057

Issue

Section

Technology organic and inorganic substances