Investigation of the change in the strength properties of a soil mass by mechanical sensing

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.132210

Keywords:

geomechatonic complex, penetration force, strength characteristics

Abstract

Determination of depth distribution of strength characteristics and comparison with analytically determined values allows obtaining data on the depth of various morphological horizons, the presence of voids and inclusions. The sensing process occurs due to soil strengthening, which was considered in the analysis of changes in the penetration force. The present stage of development of means for determining the soil properties is characterized by the application of mechatronic systems, which allow obtaining data with high accuracy, reliability and performance. In order to develop the experimental sample, the basic approaches to the creation of a geomechatronic complex for surface soil monitoring, which determine the main objectives, application scope, quality criteria were developed. The presence of geotechnical deviations in the soil mass is accompanied by changes in the penetration force, which was proposed to be measured by a strain gauge dynamometer with the recording of the rod penetration depth. The program algorithm used is a cyclic structure in which the data are logically recorded from the force sensor and the step of the rod, which determines its position. The implementation of the developed algorithm allows determining penetration forces and changes in the strength parameters of the soil mass with high accuracy (0.05 %), which makes it possible, by comparing with the analytically determined distribution, to reveal the position of geoanomalies.

Author Biographies

Stefan Zaichenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Science, Associate Professor

Department of electromechanical equipment energy-intensive industries

Oleksandr Frolov, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Science, Associate Professor

Department of Geo-Engineering

Stanislav Stovpnyk, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Science, Associate Professor

Department of Geo-Engineering

Yurii Veremiichuk, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of electricity supply

References

  1. ISO 22476-3:2005. Geotechnical investigation and testing – Field testing – Part: Standard penetration test (2005). 14.
  2. Shcherbakov, G. N. (2005). Antenno-kontaktnyy metod obnaruzheniya lokal'nyh ob’ektov v ukryvayushchih sredah. Elektrotekhnika, 33–37.
  3. Korobeynikov, L. V., Mingalev, V. V. (2006). Opyty dinamicheskogo zondirovaniya a arheologii. Regulyarnaya i haoticheskaya dinamika. Izhevsk, 60.
  4. Denysiuk, C. P., Zaichenko, S. V., Vovk, O. O., Shevchuk, N. A., Danilin, A. V. (2017). Zasady stvorennia mobilnoi systemy heotekhnichnoho monitorynhu ekzemptovanykh terytoriyi. Enerhetyka: ekonomika, tekhnolohiyi, ekolohiya, 2, 7–12.
  5. Kokodeev, A. V. Ovchinnikov, I. G. (2014). Obsledovanie, monitoring, vypolnenie remontnyh i vosstanovitel'nyh rabot na podvodnyh chastyah transportnyh sooruzheniy. Naukovedenie, 5 (24), 3–36.
  6. Explosive ordnance disposal (2001). IMAS. Geneva, 8.
  7. Zaichenko, S., Shalenko, V., Shevchuk, N., Vapnichna, V. (2017). Development of a geomechatronic complex for the geotechnical monitoring of the contour of a mine working. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 19–25. doi: 10.15587/1729-4061.2017.102067
  8. Siegwart, R. I. (2004). Introduction to autonomous mobile robots. MIT Press, 317.
  9. Bares, J. E., Wettergreen, D. S. (1999). Dante II: Technical Description, Results, and Lessons Learned. The International Journal of Robotics Research, 18 (7), 621–649. doi: 10.1177/02783649922066475
  10. Durrant-Whyte, H., Majumder, S., Thrun, S., de Battista, M., Scheding, S. (2003). A Bayesian Algorithm for Simultaneous Localisation and Map Building. Robotics Research, 49–60. doi: 10.1007/3-540-36460-9_4
  11. Parcheta, C. E., Pavlov, C. A., Wiltsie, N., Carpenter, K. C., Nash, J., Parness, A., Mitchell, K. L. (2016). A robotic approach to mapping post-eruptive volcanic fissure conduits. Journal of Volcanology and Geothermal Research, 320, 19–28. doi: 10.1016/j.jvolgeores.2016.03.006
  12. Sedin, V. L., Ul'yanov, V. Yu., Bausk, E. A., Ul'yanov, Ya. V. (2016). Metodika ispytaniy gruntov universal'nym dinamicheskim zondom liate. Visnyk Prydniprovskoi derzhavnoi akademiyi budivnytstva ta arkhitektury, 2 (215), 19–24.
  13. Ivanenko, I. (2013). Prystriy dlia vyznachennia tverdosti hruntu. Tekhniko-tekhnolohichni aspekty rozvytku ta vyprobuvannia novoi tekhniky i tekhnolohiy dlia silskoho hospodarstva Ukrainy, 17, 128–136.
  14. Hills, D., Nowell, D., Barber, J. R. (2016). KL Johnson and contact mechanics. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231 (13), 2451–2458. doi: 10.1177/0954406216634121
  15. Bazhenov, V. G. (2014). Analiz modeley i metodov rascheta dvizheniya tel vrashcheniya minimal'nogo soprotivleniya v gruntovyh sredah. Materialy XX mezhdunarodnogo simpoziuma «dinamicheskie i tekhnologicheskie problemy mekhaniki konstrukciy i sploshnyh sred» imeni A. G. Gorshkova. 2014. P. 14–16.
  16. Kotov, V. L. (2015). The influence of stress distribution on stability of the displacement of conical indenter into the soil medium. Materials Physics and Mechanics, 1, 91–94.
  17. Ganneau, F. P., Constantinides, G., Ulm, F.-J. (2006). Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials. International Journal of Solids and Structures, 43 (6), 1727–1745. doi: 10.1016/j.ijsolstr.2005.03.035
  18. Ruestes, C. J., Stukowski, A., Tang, Y., Tramontina, D. R., Erhart, P., Remington, B. A. et. al. (2014). Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution. Materials Science and Engineering: A, 613, 390–403. doi: 10.1016/j.msea.2014.07.001
  19. Sun, Z., Li, F., Cao, J., Ma, X., Li, J. (2017). A method for determination of intrinsic material length base on strain gradient study in spherical indentation. International Journal of Mechanical Sciences, 134, 253–262. doi: 10.1016/j.ijmecsci.2017.10.016
  20. Chen, J., Bull, S. J. (2009). On the factors affecting the critical indenter penetration for measurement of coating hardness. Vacuum, 83 (6), 911–920. doi: 10.1016/j.vacuum.2008.11.007
  21. Bivin, Yu. K. (2010). Mekhanika dinamicheskogo pronikaniya v gruntovuyu sredu. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela, 6, 157–191.
  22. Kotov, V. L. (2013). Opredelenie parametrov kvadratichnoy modeli lokal'nogo vzaimodeystviya pri vnedrenii sfericheskogo udarnika v myagkiy grunt. Problemy prochnosti i plastichnosti, 1, 47–55.
  23. Bazhenov, V. G. (2011). Matematicheskoe modelirovanie nestacionarnyh processov udara i pronikaniya i identifikaciya svoystv myagkih gruntovyh sred. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, 4, 139–149.
  24. Ben-Dor, G., Dubinsky, A., Elperin, T. (2007). Shape Optimization of Impactors Against a Finite Width Shield Using a Modified Method of Local Variations#. Mechanics Based Design of Structures and Machines, 35 (2), 113–125. doi: 10.1080/15397730701196629
  25. Rubin, M. B., Kositski, R., Rosenberg, Z. (2016). Essential physics of target inertia in penetration problems missed by cavity expansion models. International Journal of Impact Engineering, 98, 97–104. doi: 10.1016/j.ijimpeng.2016.09.002
  26. Boldyrev, G. G. (2010). Ispytaniya gruntov metodami penetracii. Inzhenernye izyskaniya, 11, 30–42.
  27. Boldyrev, G. G. (2014). Interpretaciya rezul'tatov polevyh ispytaniy s cel'yu opredeleniya deformacionnyh harakteristik gruntov. Inzhenernye izyskaniya, 5, 86–97.
  28. Kravets, S. V., Posmitiukha, O. P., Suponiev, V. N. (2017). Analitychnyi sposib vyznachennia oporu zanurennia konusnoho nakonechnyka v grunt. Stroitel'stvo. Materialovedenie. Mashinostroenie. Seriya: Pod'emno-transportnye, stroitel'nye i dorozhnye mashiny i oborudovanie, 97, 91–98.
  29. Kravets, S. V., Posmitjukha, O. P., Suponyev, V. M. (2017). Determining of the equivalent and optimum diameters of cone-cylinder tip with soil broaching spurs. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 4 (70), 89–97. doi: 10.15802/stp2017/109483
  30. Rakhmanov, S. R. (2015). Optimization of process dynamics press roll billets firmware. Izvestiya Visshikh Uchebnykh Zavedenii. Chernaya Metallurgiya, 57 (4), 15–20. doi: 10.17073/0368-0797-2014-4-15-20
  31. Rahmanov, S. R. (2011). Issledovanie dinamiki processa proshivki trubnoy zagotovki na proshivnom stane. Vibratsii v tekhnitsi ta tekhnolohiyakh, 1, 46–52.
  32. Timoshpol'skiy, V. I. (2015) Raschet usiliya proshivki pri izgotovlenii trub. Lit'e i metallurgiya, 4, 50–53.
  33. Johnson, K. L. (1987). Contact mechanics. Cambridge university press, 456. doi: 10.1017/cbo9781139171731

Downloads

Published

2018-05-25

How to Cite

Zaichenko, S., Frolov, O., Stovpnyk, S., & Veremiichuk, Y. (2018). Investigation of the change in the strength properties of a soil mass by mechanical sensing. Eastern-European Journal of Enterprise Technologies, 3(9 (93), 19–26. https://doi.org/10.15587/1729-4061.2018.132210

Issue

Section

Information and controlling system