Analysis of influence of technical features of a pid­controller implementation on the dynamics of automated control system

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.132229

Keywords:

PID controller, integral saturation, noise filtering, differentiator, nonimpact transmission

Abstract

Under conditions of intensification and maximization of production profitability, a problem of regulation, optimization and improvement of the structure of automatic control systems arises. To date, there are many topical problems associated with the practical implementation of the PID controller, e.g. unification of the PID controller structure, implementation of a differential component, integral saturation and nonimpact switching of parameters and operating modes.

Influence of nonlinearities, noise, disturbances, functions, and peculiarities of the PID controller on dynamics of the automatic control system was studied. It was shown that for the maximum efficiency of implementation of the PID controller for controlling inertial objects with a transportation lag, a complex approach must be applied: limiting the rate of growth of the target disturbance and conditional integration to eliminate integral saturation; simultaneous application of an exponential filter of the measured value and a differentiator with a low-cut filter to minimize the effect of noise and interferences on the transient processes; tracing the current state of the system allows one to prevent an "impact" when changing the operating modes of the PID controller; introduction of the controller insensitivity zone will potentially provide a longer operation life of the actuator.

Mathematical modeling of the system of automatic regulation of rarefaction in the boiler furnace was performed taking into account the proposed set of solutions. These recommendations enable implementation of a PID controller suitable for practical use taking into account stochasticity, nonlinearity, quasi-stationarity and limitations of the technological processes.

Integrated assessment and consideration of these problems will contribute to improving efficiency and reliability of equipment, reducing energy consumption and time to reach the set goal in the process of automatic regulation without changing the structure of the control system.

Author Biographies

Oleksandr Stepanets, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Automation of heat-and-power engineering processes

Yurii Mariiash, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

Department of Automation of heat-and-power engineering processes

References

  1. Bertocco, M., Cappellazzo, S., Flammini, A., Parvis, M. (2002). A multi-layer architecture for distributed data acquisition. IMTC/2002. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.00CH37276). doi: 10.1109/imtc.2002.1007138
  2. Leva, A., Cox, C., Ruano, A. (2002). Hands-on PID autotuning: a guide to better utilization. IFAC Professional Brief, 84.
  3. Li, Y., Ang, K. H., Chong, G. C. Y. (2006). Patents, software, and hardware for PID control: an overview and analysis of the current art. IEEE Control Systems Magazine, 26 (1), 42–54. doi: 10.1109/mcs.2006.1580153
  4. Blevins, T., Nixon, M. (2011). Control Loop Foundation: batch and continuous processe. International Society of Automation, 406.
  5. Åstrøm, K. J., Hägglund’s, T. (2006). Advanced PID control. The Instrumentation, Systems, and Automation Society, 406.
  6. O'Dwyer, A. (2009). Handbook of PI and PID Controller Tuning Rules. Imperial College Press, 624. doi: 10.1142/9781848162433
  7. Guzmán, J. L., García, P., Hägglund, T., Dormido, S., Albertos, P., Berenguel, M. (2008). Interactive tool for analysis of time-delay systems with dead-time compensators. Control Engineering Practice, 16 (7), 824–835. doi: 10.1016/j.conengprac.2007.09.002
  8. Seborg, D. E., Edgar, T. F.,‎ Mellichamp, D. A.,‎ Doyle, F. J. (2017). Process Dynamics and Control. Wiley, 515.
  9. Abd El-Hamid, A. S., H. Eissa, A., Abouel-Fotouh, A. M., Abdel-Fatah, M. A. (2015). Comparison Study of Different Structures of PID Controllers. Research Journal of Applied Sciences, Engineering and Technology, 11 (6), 645–652. doi: 10.19026/rjaset.11.2026
  10. Smuts, F. J. (2011). Process Control for Practitioners USA: OptiControls, 315. Available at: http://www.opticontrols.com/pcfp-book
  11. Denisenko, V. V. (2007). PID-regulyatory: principy postroeniya i modifikacii. Sovremennye tekhnologii avtomatizacii, 2, 90–98.
  12. Aleksandrov, A. G., Palenov, M. V. (2012). Sostoyanie i perspektivy razvitiya adaptivnyh PID-regulyatorov v tekhnicheskih sistemah. Tekhnicheskie i programmnye sredstva sistem upravleniya, kontrolya i izmereniya: 3-y vserossiyskaya konferenciya s mezhdunarodnym uchastiem: mat. konf. IPU RAN, 1577–1587.
  13. Terrence, L. B. (2012). PID Advances in Industrial Control. IFAC Conference on Advances in PID Control PID'12. Brescia, Italy, 28–30.
  14. Segovia, V. R., Hägglund, T., Åström, K. J. (2014). Measurement noise filtering for common PID tuning rules. Control Engineering Practice, 32, 43–63. doi: 10.1016/j.conengprac.2014.07.005
  15. Hägglund, T. (2013). A unified discussion on signal filtering in PID control. Control Engineering Practice, 21 (8), 994–1006. doi: 10.1016/j.conengprac.2013.03.012
  16. Denisenko, V. V. (2009). Komp'yuternoe upravleniya tekhnologicheskim processom, eksperimentom, oborudovaniem. Moscow: Goryachaya liniya, 608.
  17. Kovrigo, Yu. M., Fomenko, B. V., Polishchuk, I. A. (2007). Matematicheskoe modelirovanie sistem avtomaticheskogo regulirovaniya s uchetom ogranicheniy na upravlenie v pakete Matlab. Avtomatika. Avtomatizacіya. Elektrotekhnіchnі kompleksi ta sistemi, 2, 21–28.
  18. Kovrigo, Y. M., Fomenko, B. V., Bunke, A. S. (2012). Achieving more efficient control of boilers by taking technological constraints into account. Thermal Engineering, 59 (2), 147–153. doi: 10.1134/s0040601512020097
  19. Laskawski, M., Wcislik, M. (2016). Sampling Rate Impact on the Tuning of PID Controller Parameters. International Journal of Electronics and Telecommunications, 62 (1). doi: 10.1515/eletel-2016-0005
  20. Kovrigo, Yu. M., Bagan, T. G., Bunke, A. S. (2014). Obespechenie robastnogo upravleniya v sistemah regulirovaniya inercionnymi teploenergeticheskimi ob'ektami. Teploenergetika, 3, 9–14.
  21. Stepanets, O. V., Movchan, A. P. (2011). Control of boiler heat load based on assessment of object model. Eastern-European Journal of Enterprise Technologies, 4 (8 (52)), 42–45. Available at: http://journals.uran.ua/eejet/article/view/1463/1361
  22. Kovryho, Yu. M., Bahan, T. H., Ushchapovskyi, A. L. (2014). Designing control systems with controller based on internal model with two degrees of freedom. Eastern-European Journal of Enterprise Technologies, 4 (11 (70)), 4–8. doi: 10.15587/1729-4061.2014.26307
  23. Pletnev, G. P. (1981). Avtomatizirovannoe upravlenie ob’ektami teplovyh elektrostanciy. Moscow: Energoatomizdat, 368.

Downloads

Published

2018-05-25

How to Cite

Stepanets, O., & Mariiash, Y. (2018). Analysis of influence of technical features of a pid­controller implementation on the dynamics of automated control system. Eastern-European Journal of Enterprise Technologies, 3(2 (93), 60–69. https://doi.org/10.15587/1729-4061.2018.132229