Improving the energy efficiency of solar systems for obtaining water from atmospheric air

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.133643

Keywords:

water producing systems, atmospheric air, dew point, solar absorption refrigeration units

Abstract

We considered problems of water scarcity elimination in arid regions of the planet and analyzed modern water producing systems. We showed the prospects of obtaining of water from atmospheric air directly while cooling it below the dew point using refrigeration units.

We proposed to use absorption-type cooling systems with a water-ammonia solution as a working liquid as cooling units in regions with an excess of solar energy. We noted that low energy characteristics of heat-using refrigeration cycle, with main problems associated with non-calculated losses of refrigerant (ammonia) during transportation through AWRU refluxer hamper a widespread use of absorption water-ammonia refrigerating units (AWRU) in systems for obtaining of water from atmospheric air. This contribution is particularly noticeable in operation of AWRU in a wide range of outdoor air temperatures.

We performed modeling of heat and mass exchange processes of a lifting section of an AWRU refluxer to find methods for elimination of ammonia transportation losses. At the heart of model representations were equations of heat and mass balances, and we took into account resistance of a diffusion process at radial movement of a vapor flow to a wall of a refluxer in modeling. A preliminary analysis of thermal resistance of reflux film showed its small contribution to the total resistance and we ignored it subsequently.

As a result of modeling, we found a significant (up to 36 °C) temperature difference between a flow inside a refluxer and its wall. Experimental studies of a serial AWRU confirmed the modeling results. The obtained results made possible to propose the original design of a heat-insulating casing of an AWRU refluxer with variable thermal resistance with a corresponding change in the outside air temperature. This gave possibility to increase energy efficiency from 18 to 36 % and productivity of systems for obtaining of water from atmospheric air.

Author Biographies

Andrey Kholodkov, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Postgraduate student

Department of Heat-and-Power Engineering and Fuel Pipeline Transportation

Eugeniy Osadchuk, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Senior Lecturer

Department of Higher Mathematics

Alexandr Titlov, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Doctor of Technical Sciences, Professor, Head of Department

Department of Heat-and-Power Engineering and Fuel Pipeline Transportation

Irina Boshkova, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Doctor of Technical Sciences, Associate Professor

Department of Heat-and-Power Engineering and Fuel Pipeline Transportation

Nataliya Zhihareva, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD, Associate Professor

Department of refrigerating machines, plants and air conditioning

References

  1. A new global partnership: eradicate poverty and transform economies through sustainable development. The Report of the High-Level Panel of Eminent Persons on the Post-2015 Development Agenda. Available at: https://sustainabledevelopment.un.org/index.php?page=view&type=400&nr=893&menu=1561
  2. Mezhdunarodnoe desyatiletie deystviy «Voda dlya zhizni», 2005–2015 gody. Mekhanizm «OON – vodnye resursy». Available at: http://www.un.org/ru/waterforlifedecade/background.shtml
  3. Santilli, R. (2006). A new gaseous and combustible form of water. International Journal of Hydrogen Energy, 31 (9), 1113–1128. doi: 10.1016/j.ijhydene.2005.11.006
  4. Dukhin, S. S., Mishchuk, N. A. (1993). Intensification of electrodialysis based on electroosmosis of the second kind. Journal of Membrane Science, 79 (2-3), 199–210. doi: 10.1016/0376-7388(93)85116-e
  5. Schmoldt, H., Strathmann, H., Kaschemekat, J. (1981). Desalination of sea water by an electrodialysis-reverse osmosis hybrid system. Desalination, 38, 567–582. doi: 10.1016/s0011-9164(00)86100-7
  6. Selvey, C., Reiss, H. (1985). Ion transport in inhomogeneous ion exchange membranes. Journal of Membrane Science, 23 (1), 11–27. doi: 10.1016/s0376-7388(00)83131-2
  7. Forbes, R. J. (1970). A short history of the art of distillation: from the beginnings up to the death of Cellier Blumenthal. BRILL, 405.
  8. Perry, R. H. (Ed.) (1984). Perry's Chemical Engineers' Handbook. McGraw-Hill, 2240.
  9. Al' Maytami Valid Abdulvahid Mohammed, Frumin, G. T. (2007). Napravleniya sovershenstvovaniya vodoobespecheniya v stranah araviyskogo poluostrova. Sovremennye problemy nauki i obrazovaniya, 6, 13–17.
  10. Al' Maytami Valid Abdulvahid Mohammed, Frumin, G. T. (2008). Ekologicheski bezopasnye tekhnologii vodoobespecheniya v stranah araviyskogo poluostrova. Sovremennye problemy nauki i obrazovaniya, 3, 111–115.
  11. Alekseev, V. V., Chekarev, K. V. (1996). Poluchenie presnoy vody iz vlazhnogo vozduha. Aridnye ekosistemy, 2 (2-3).
  12. Perel'shteyn, B. H. (2008). Novye energeticheskie sistemy. Kazan': Izd-vo Kazan. gos. tekhn. un-ta, 244.
  13. The European Solar Thermal Industry Federation (ESTIF). Available at: http://www.estif.org
  14. Vasyliv, O. B., Kovalenko, O. O. (2009). Struktura ta shliakhy ratsionalnoho vykorystannia vody na kharchovykh pidpryiemstvakh. Naukovi pratsi ONAKhT, 35, 54–58.
  15. Osadchuk, E. A., Titlov, A. S., Kuzakon', V. M., Shlapak, G. V. (2015). Development of schemes of pump and gasoline-pump absorption water-ammonia refrigeration machines to work in a system of water production from the air. Technology audit and production reserves, 3 (3 (23)), 30–37. doi: 10.15587/2312-8372.2015.44139
  16. Titlov, O., Baidak, Yu., Khmelnyuk, M. (2015). Optimizing Nh3-H2o Absorption System To Produce Water From Ambient Air. Applied Science Reports, 10 (2). doi: 10.15192/pscp.asr.2015.10.2.9099
  17. Titlov, O. S., Vasyliv, O. B., Kuzakon, V. M., Osadchuk, Ye. O. (2015). Pat. No. 104854 UA. Sposib oderzhannia vody z atmosfernoho povitria. MPK: F25B 15/10, E03B 3/28. No. 201507386; declareted: 23.07.2015; published: 25.02.2016, Bul. No. 4.
  18. Titlov, O. S., Vasyliv, O. B., Osadchuk, Ye. O. (2015). Pat. No. 100195 UA. Sposib oderzhannia vody z atmosfernoho povitria. MPK: F25B 15/00, E03B 3/28. No. u201501512; declareted: 20.02.2015; published: 10.07.2015, Bul. No. 9.
  19. Doroshenko, A. V., Kholpanov, L. P., Kvurt, Y. P. (2009). Alternative Refrigerating, Heat-Pumping and Air-Conditioning Systems on the Basis of the Open Absorption Cycle and Solar Energy. Nova Science Publishers, 210.
  20. Absorption Cooling Basics. Available at: https://www.energy.gov/
  21. Morozyuk, L. I. (2014). Teploispol'zuyushchie holodil'nye mashiny – puti razvitiya i sovershenstvovaniya // Kholodylna tekhnika ta tekhnolohiya, 5, 23–29. doi: 10.15673/0453-8307.5/2014.28695
  22. Norcold Inc. Refrigerators. Available at: http://www.norcold.com
  23. Titlov, A. S. (2006). Nauchno-tekhnicheskie osnovy energosberezheniya pri proektirovanii holodil'nyh apparatov s absorbcionno-diffuzionnymi holodil'nymi mashinami. Naukovi pratsi Odeskoiyi natsionalnoiyi akademiyi kharchovykh tekhnolohiy, 29, 194–200.
  24. Rodríguez-Muñoz, J. L., Belman-Flores, J. M. (2014). Review of diffusion–absorption refrigeration technologies. Renewable and Sustainable Energy Reviews, 30, 145–153. doi: 10.1016/j.rser.2013.09.019
  25. Kholodkov, A., Titlov, A. (2017). Modeling of thermal modes of the reflux condenser of the absorption refrigeration unit. EUREKA: Physics and Engineering, 3, 31–40. doi: 10.21303/2461-4262.2017.00358
  26. Babakin, B. S., Vygodin, V. A. (2005). Bytovye holodil'niki i morozil'niki. Ryazan': Uzorech'e, 860.
  27. Mirmov, I. N. (2011). Ispol'zovanie solnechnoy energii i vtorichnyh istochnikov teploty dlya polucheniya holoda. Holodil'naya tekhnika, 9, 44–49.
  28. El-Shaarawi, M. A. I., Said, S. A. M., Siddiqui, M. U. (2014). Comparative analysis between constant pressure and constant temperature absorption processes for an intermittent solar refrigerator. International Journal of Refrigeration, 41, 103–112. doi: 10.1016/j.ijrefrig.2013.12.019
  29. Yildiz, A., Ersöz, M. A., Gözmen, B. (2014). Effect of insulation on the energy and exergy performances in Diffusion Absorption Refrigeration (DAR) systems. International Journal of Refrigeration, 44, 161–167. doi: 10.1016/j.ijrefrig.2014.04.021
  30. Wang, Q., Gong, L., Wang, J. P., Sun, T. F., Cui, K., Chen, G. M. (2011). A numerical investigation of a diffusion absorption refrigerator operating with the binary refrigerant for low temperature applications. Applied Thermal Engineering, 31 (10), 1763–1769. doi: 10.1016/j.applthermaleng.2011.02.021
  31. Hassan, H. Z., Mohamad, A. A. (2012). A review on solar cold production through absorption technology. Renewable and Sustainable Energy Reviews, 16 (7), 5331–5348. doi: 10.1016/j.rser.2012.04.049
  32. Acuña, A., Velázquez, N., Cerezo, J. (2013). Energy analysis of a diffusion absorption cooling system using lithium nitrate, sodium thiocyanate and water as absorbent substances and ammonia as the refrigerant. Applied Thermal Engineering, 51 (1-2), 1273–1281. doi: 10.1016/j.applthermaleng.2012.10.046
  33. Long, Z., Luo, Y., Li, H., Bu, X., Ma, W. (2013). Performance analysis of a diffusion absorption refrigeration cycle working with TFE–TEGDME mixture. Energy and Buildings, 58, 86–92. doi: 10.1016/j.enbuild.2012.12.003
  34. Sathyabhama, A., Ashok, B. (2008). Thermodynamic simulation of ammonia-water absorption refrigeration system. Thermal Science, 12 (3), 45–53. doi: 10.2298/tsci0803045s
  35. Sözen, A., Menlik, T., Özbaş, E. (2012). The effect of ejector on the performance of diffusion absorption refrigeration systems: An experimental study. Applied Thermal Engineering, 33-34, 44–53. doi: 10.1016/j.applthermaleng.2011.09.009
  36. Bogdanov, S. N. et. al. (1999). Svoystva veshchestv. Holodil'naya tekhnika: spravochnik. Sankt-Peterburg: SPbGAHPT, 320.
  37. Osadchuk, E. A., Kirillov, V. H. (2017). Matematicheskoe modelirovanie rabochih rezhimov deflegmatora absorbcionnogo vodoammiachnogo holodil'nogo agregata v sistemah polucheniya vody iz atmosfernogo vozduha s ispol'zovaniem solnechnoy energii. Kholodylnaia tekhnika ta tekhnolohiya, 53 (1). doi: 10.15673/ret.v53i1.534
  38. Titlov, A. S. (2011). Energosberegayushchee upravlenie rezhimami bytovyh absorbcionnyh holodil'nyh priborov (AHP). Chast' 1. Avtomatyzatsiya tekhnolohichnykh i biznes protsesiv, 5-6, 38–44. doi: 10.15673/2312-3125.5-6/2011.35022
  39. Vasyliv, O. B., Titlov, A. S., Holodkov, A. O. (2017). Modelirovanie teplovyh rezhimov pod'emnogo uchastka deflegmatora bytovogo absorbcionnogo holodil'nogo agregata. Kholodylna tekhnika ta tekhnolohiya, 53 (1). doi: 10.15673/ret.v53i1.535
  40. Holodkov, A. O., Titlov, A. S., Titlova, O. A. (2017). Modelirovanie teplovyh rezhimov deflegmatora bytovogo absorbcionnogo holodil'nogo agregata. Kholodylna tekhnika ta tekhnolohiya, 53 (4). doi: /10.15673/ret.v53i4.703
  41. Kreyt, F., Blek, U. (1983). Osnovy teploperedachi. Moscow: Mir, 512.
  42. Shervud, T., Pigford, R., Uilki, Ch. (1982). Massoperedacha. Moscow: Himiya, 696.
  43. Dul'nev, G. N. (1984). Teplo- i massoobmen v radioelektronnoy apparature. Moscow, 247.
  44. Osadchuk, E. A., Titlov, A. S. (2011). Analiticheskie zavisimosti dlya rascheta termodinamicheskih parametrov i teplofizicheskih svoystv vodoammiachnogo rastvora. Naukovi pratsi ONAKhT, 39, 178–182.
  45. DSTU 3023-95 (HOST 30204-95, ISO 5155-83, ISO 7371-85, ISO 8187-91). Prylady kholodylni pobutovi. Ekspluatatsiyni kharakterystyky ta metody vyprobuvan (1996). Kyiv: Derzhstandart Ukrainy, 22.
  46. Titlova, O. A., Titlov, A. S. (2011). Analiz vliyaniya teplovoy moshchnosti, podvodimoy v generatore absorbcionnogo holodil'nogo agregata, na rezhimy raboty i energeticheskuyu effektivnost' absorbcionnogo holodil'nogo pribora. Naukovi pratsi ONAKhT, 39, 148–154.
  47. Titlova, O. A., Hobin, V. A. (2014). Energoeffektivnoe upravlenie absorbcionnymi holodil'nikami. Kherson: Grin' D.S., 216.
  48. Doroshenko, A. V., Gorin, A. N., Glauberman, M. A. (2008). Solnechnaya energetika (Teoriya, razrabotka, praktika). Doneck: Nord-Press, 374.

Downloads

Published

2018-06-14

How to Cite

Kholodkov, A., Osadchuk, E., Titlov, A., Boshkova, I., & Zhihareva, N. (2018). Improving the energy efficiency of solar systems for obtaining water from atmospheric air. Eastern-European Journal of Enterprise Technologies, 3(8 (93), 41–51. https://doi.org/10.15587/1729-4061.2018.133643

Issue

Section

Energy-saving technologies and equipment