Improving the energy efficiency of solar systems for obtaining water from atmospheric air
DOI:
https://doi.org/10.15587/1729-4061.2018.133643Keywords:
water producing systems, atmospheric air, dew point, solar absorption refrigeration unitsAbstract
We considered problems of water scarcity elimination in arid regions of the planet and analyzed modern water producing systems. We showed the prospects of obtaining of water from atmospheric air directly while cooling it below the dew point using refrigeration units.
We proposed to use absorption-type cooling systems with a water-ammonia solution as a working liquid as cooling units in regions with an excess of solar energy. We noted that low energy characteristics of heat-using refrigeration cycle, with main problems associated with non-calculated losses of refrigerant (ammonia) during transportation through AWRU refluxer hamper a widespread use of absorption water-ammonia refrigerating units (AWRU) in systems for obtaining of water from atmospheric air. This contribution is particularly noticeable in operation of AWRU in a wide range of outdoor air temperatures.
We performed modeling of heat and mass exchange processes of a lifting section of an AWRU refluxer to find methods for elimination of ammonia transportation losses. At the heart of model representations were equations of heat and mass balances, and we took into account resistance of a diffusion process at radial movement of a vapor flow to a wall of a refluxer in modeling. A preliminary analysis of thermal resistance of reflux film showed its small contribution to the total resistance and we ignored it subsequently.
As a result of modeling, we found a significant (up to 36 °C) temperature difference between a flow inside a refluxer and its wall. Experimental studies of a serial AWRU confirmed the modeling results. The obtained results made possible to propose the original design of a heat-insulating casing of an AWRU refluxer with variable thermal resistance with a corresponding change in the outside air temperature. This gave possibility to increase energy efficiency from 18 to 36 % and productivity of systems for obtaining of water from atmospheric air.
References
- A new global partnership: eradicate poverty and transform economies through sustainable development. The Report of the High-Level Panel of Eminent Persons on the Post-2015 Development Agenda. Available at: https://sustainabledevelopment.un.org/index.php?page=view&type=400&nr=893&menu=1561
- Mezhdunarodnoe desyatiletie deystviy «Voda dlya zhizni», 2005–2015 gody. Mekhanizm «OON – vodnye resursy». Available at: http://www.un.org/ru/waterforlifedecade/background.shtml
- Santilli, R. (2006). A new gaseous and combustible form of water. International Journal of Hydrogen Energy, 31 (9), 1113–1128. doi: 10.1016/j.ijhydene.2005.11.006
- Dukhin, S. S., Mishchuk, N. A. (1993). Intensification of electrodialysis based on electroosmosis of the second kind. Journal of Membrane Science, 79 (2-3), 199–210. doi: 10.1016/0376-7388(93)85116-e
- Schmoldt, H., Strathmann, H., Kaschemekat, J. (1981). Desalination of sea water by an electrodialysis-reverse osmosis hybrid system. Desalination, 38, 567–582. doi: 10.1016/s0011-9164(00)86100-7
- Selvey, C., Reiss, H. (1985). Ion transport in inhomogeneous ion exchange membranes. Journal of Membrane Science, 23 (1), 11–27. doi: 10.1016/s0376-7388(00)83131-2
- Forbes, R. J. (1970). A short history of the art of distillation: from the beginnings up to the death of Cellier Blumenthal. BRILL, 405.
- Perry, R. H. (Ed.) (1984). Perry's Chemical Engineers' Handbook. McGraw-Hill, 2240.
- Al' Maytami Valid Abdulvahid Mohammed, Frumin, G. T. (2007). Napravleniya sovershenstvovaniya vodoobespecheniya v stranah araviyskogo poluostrova. Sovremennye problemy nauki i obrazovaniya, 6, 13–17.
- Al' Maytami Valid Abdulvahid Mohammed, Frumin, G. T. (2008). Ekologicheski bezopasnye tekhnologii vodoobespecheniya v stranah araviyskogo poluostrova. Sovremennye problemy nauki i obrazovaniya, 3, 111–115.
- Alekseev, V. V., Chekarev, K. V. (1996). Poluchenie presnoy vody iz vlazhnogo vozduha. Aridnye ekosistemy, 2 (2-3).
- Perel'shteyn, B. H. (2008). Novye energeticheskie sistemy. Kazan': Izd-vo Kazan. gos. tekhn. un-ta, 244.
- The European Solar Thermal Industry Federation (ESTIF). Available at: http://www.estif.org
- Vasyliv, O. B., Kovalenko, O. O. (2009). Struktura ta shliakhy ratsionalnoho vykorystannia vody na kharchovykh pidpryiemstvakh. Naukovi pratsi ONAKhT, 35, 54–58.
- Osadchuk, E. A., Titlov, A. S., Kuzakon', V. M., Shlapak, G. V. (2015). Development of schemes of pump and gasoline-pump absorption water-ammonia refrigeration machines to work in a system of water production from the air. Technology audit and production reserves, 3 (3 (23)), 30–37. doi: 10.15587/2312-8372.2015.44139
- Titlov, O., Baidak, Yu., Khmelnyuk, M. (2015). Optimizing Nh3-H2o Absorption System To Produce Water From Ambient Air. Applied Science Reports, 10 (2). doi: 10.15192/pscp.asr.2015.10.2.9099
- Titlov, O. S., Vasyliv, O. B., Kuzakon, V. M., Osadchuk, Ye. O. (2015). Pat. No. 104854 UA. Sposib oderzhannia vody z atmosfernoho povitria. MPK: F25B 15/10, E03B 3/28. No. 201507386; declareted: 23.07.2015; published: 25.02.2016, Bul. No. 4.
- Titlov, O. S., Vasyliv, O. B., Osadchuk, Ye. O. (2015). Pat. No. 100195 UA. Sposib oderzhannia vody z atmosfernoho povitria. MPK: F25B 15/00, E03B 3/28. No. u201501512; declareted: 20.02.2015; published: 10.07.2015, Bul. No. 9.
- Doroshenko, A. V., Kholpanov, L. P., Kvurt, Y. P. (2009). Alternative Refrigerating, Heat-Pumping and Air-Conditioning Systems on the Basis of the Open Absorption Cycle and Solar Energy. Nova Science Publishers, 210.
- Absorption Cooling Basics. Available at: https://www.energy.gov/
- Morozyuk, L. I. (2014). Teploispol'zuyushchie holodil'nye mashiny – puti razvitiya i sovershenstvovaniya // Kholodylna tekhnika ta tekhnolohiya, 5, 23–29. doi: 10.15673/0453-8307.5/2014.28695
- Norcold Inc. Refrigerators. Available at: http://www.norcold.com
- Titlov, A. S. (2006). Nauchno-tekhnicheskie osnovy energosberezheniya pri proektirovanii holodil'nyh apparatov s absorbcionno-diffuzionnymi holodil'nymi mashinami. Naukovi pratsi Odeskoiyi natsionalnoiyi akademiyi kharchovykh tekhnolohiy, 29, 194–200.
- Rodríguez-Muñoz, J. L., Belman-Flores, J. M. (2014). Review of diffusion–absorption refrigeration technologies. Renewable and Sustainable Energy Reviews, 30, 145–153. doi: 10.1016/j.rser.2013.09.019
- Kholodkov, A., Titlov, A. (2017). Modeling of thermal modes of the reflux condenser of the absorption refrigeration unit. EUREKA: Physics and Engineering, 3, 31–40. doi: 10.21303/2461-4262.2017.00358
- Babakin, B. S., Vygodin, V. A. (2005). Bytovye holodil'niki i morozil'niki. Ryazan': Uzorech'e, 860.
- Mirmov, I. N. (2011). Ispol'zovanie solnechnoy energii i vtorichnyh istochnikov teploty dlya polucheniya holoda. Holodil'naya tekhnika, 9, 44–49.
- El-Shaarawi, M. A. I., Said, S. A. M., Siddiqui, M. U. (2014). Comparative analysis between constant pressure and constant temperature absorption processes for an intermittent solar refrigerator. International Journal of Refrigeration, 41, 103–112. doi: 10.1016/j.ijrefrig.2013.12.019
- Yildiz, A., Ersöz, M. A., Gözmen, B. (2014). Effect of insulation on the energy and exergy performances in Diffusion Absorption Refrigeration (DAR) systems. International Journal of Refrigeration, 44, 161–167. doi: 10.1016/j.ijrefrig.2014.04.021
- Wang, Q., Gong, L., Wang, J. P., Sun, T. F., Cui, K., Chen, G. M. (2011). A numerical investigation of a diffusion absorption refrigerator operating with the binary refrigerant for low temperature applications. Applied Thermal Engineering, 31 (10), 1763–1769. doi: 10.1016/j.applthermaleng.2011.02.021
- Hassan, H. Z., Mohamad, A. A. (2012). A review on solar cold production through absorption technology. Renewable and Sustainable Energy Reviews, 16 (7), 5331–5348. doi: 10.1016/j.rser.2012.04.049
- Acuña, A., Velázquez, N., Cerezo, J. (2013). Energy analysis of a diffusion absorption cooling system using lithium nitrate, sodium thiocyanate and water as absorbent substances and ammonia as the refrigerant. Applied Thermal Engineering, 51 (1-2), 1273–1281. doi: 10.1016/j.applthermaleng.2012.10.046
- Long, Z., Luo, Y., Li, H., Bu, X., Ma, W. (2013). Performance analysis of a diffusion absorption refrigeration cycle working with TFE–TEGDME mixture. Energy and Buildings, 58, 86–92. doi: 10.1016/j.enbuild.2012.12.003
- Sathyabhama, A., Ashok, B. (2008). Thermodynamic simulation of ammonia-water absorption refrigeration system. Thermal Science, 12 (3), 45–53. doi: 10.2298/tsci0803045s
- Sözen, A., Menlik, T., Özbaş, E. (2012). The effect of ejector on the performance of diffusion absorption refrigeration systems: An experimental study. Applied Thermal Engineering, 33-34, 44–53. doi: 10.1016/j.applthermaleng.2011.09.009
- Bogdanov, S. N. et. al. (1999). Svoystva veshchestv. Holodil'naya tekhnika: spravochnik. Sankt-Peterburg: SPbGAHPT, 320.
- Osadchuk, E. A., Kirillov, V. H. (2017). Matematicheskoe modelirovanie rabochih rezhimov deflegmatora absorbcionnogo vodoammiachnogo holodil'nogo agregata v sistemah polucheniya vody iz atmosfernogo vozduha s ispol'zovaniem solnechnoy energii. Kholodylnaia tekhnika ta tekhnolohiya, 53 (1). doi: 10.15673/ret.v53i1.534
- Titlov, A. S. (2011). Energosberegayushchee upravlenie rezhimami bytovyh absorbcionnyh holodil'nyh priborov (AHP). Chast' 1. Avtomatyzatsiya tekhnolohichnykh i biznes protsesiv, 5-6, 38–44. doi: 10.15673/2312-3125.5-6/2011.35022
- Vasyliv, O. B., Titlov, A. S., Holodkov, A. O. (2017). Modelirovanie teplovyh rezhimov pod'emnogo uchastka deflegmatora bytovogo absorbcionnogo holodil'nogo agregata. Kholodylna tekhnika ta tekhnolohiya, 53 (1). doi: 10.15673/ret.v53i1.535
- Holodkov, A. O., Titlov, A. S., Titlova, O. A. (2017). Modelirovanie teplovyh rezhimov deflegmatora bytovogo absorbcionnogo holodil'nogo agregata. Kholodylna tekhnika ta tekhnolohiya, 53 (4). doi: /10.15673/ret.v53i4.703
- Kreyt, F., Blek, U. (1983). Osnovy teploperedachi. Moscow: Mir, 512.
- Shervud, T., Pigford, R., Uilki, Ch. (1982). Massoperedacha. Moscow: Himiya, 696.
- Dul'nev, G. N. (1984). Teplo- i massoobmen v radioelektronnoy apparature. Moscow, 247.
- Osadchuk, E. A., Titlov, A. S. (2011). Analiticheskie zavisimosti dlya rascheta termodinamicheskih parametrov i teplofizicheskih svoystv vodoammiachnogo rastvora. Naukovi pratsi ONAKhT, 39, 178–182.
- DSTU 3023-95 (HOST 30204-95, ISO 5155-83, ISO 7371-85, ISO 8187-91). Prylady kholodylni pobutovi. Ekspluatatsiyni kharakterystyky ta metody vyprobuvan (1996). Kyiv: Derzhstandart Ukrainy, 22.
- Titlova, O. A., Titlov, A. S. (2011). Analiz vliyaniya teplovoy moshchnosti, podvodimoy v generatore absorbcionnogo holodil'nogo agregata, na rezhimy raboty i energeticheskuyu effektivnost' absorbcionnogo holodil'nogo pribora. Naukovi pratsi ONAKhT, 39, 148–154.
- Titlova, O. A., Hobin, V. A. (2014). Energoeffektivnoe upravlenie absorbcionnymi holodil'nikami. Kherson: Grin' D.S., 216.
- Doroshenko, A. V., Gorin, A. N., Glauberman, M. A. (2008). Solnechnaya energetika (Teoriya, razrabotka, praktika). Doneck: Nord-Press, 374.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Andrey Kholodkov, Eugeniy Osadchuk, Alexandr Titlov, Irina Boshkova, Nataliya Zhihareva
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.