Development of diode temperature sensors with operating range up to 750 K
DOI:
https://doi.org/10.15587/1729-4061.2018.133811Keywords:
diode temperature sensors, diode thermometry, thermometric characteristic, thermal sensitivity, liquid-phase epitaxyAbstract
The problem of expansion of the range of functioning of diode thermosensors in the region of high temperatures is considered and some of the results of the author’s research in this area are given. To solve this problem, it is proposed to use diode structures based on wide bandgap semiconductor compounds in the III-V system. The technological method of producing prototypes of high-temperature diode temperature sensors based on GaP is developed. The presented method allows manufacturing samples of diode temperature sensors, the high-temperature limit of which exceeds the limit of functioning of commercial silicon diode temperature sensors by about 200–300 K. The experimental methods of obtaining epitaxial structures of solid solutions of AlGaAs and fabricating diode temperature sensors based on them are developed. It is shown that the approach chosen in this work allows extending the thermometric characteristics of such diodes in the high-temperature region by approximately 150–250 K. The paper presents the methodology for forming InGaN device structures and production of prototype high-temperature diode temperature sensors based on them. This technique with revisions can be used for the manufacture of diode temperature sensors and other devices for high-temperature applications, the entire range of solid solutions in the InN-GaN system. The parameters and characteristics of the obtained diode temperature sensors are investigated. The results of the research can be used by specialists in the field of electronics and optoelectronics in the development and production of semiconductor devices.
References
- Zhang, N., Lin, C.-M., Rao, Y., Senesky, D. G., Pisano, A. P. (2014). 4H-SiC PN diode for extreme environment temperature sensing applications. Sensors for Extreme Harsh Environments. doi: 10.1117/12.2050768
- Sclar, N., Pollock, D. B. (1972). On diode thermometers. Solid-State Electronics, 15 (5), 473–480. doi: 10.1016/0038-1101(72)90149-9
- Shwarts, Yu. М., Shwarts, M. M. (2005). Microelectronic thermodiode sensors of extreme electronics. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 3, 30–33.
- Kulish, N. R., Shwarts, Yu. M., Borblik, V. L., Venger, Ye. F., Sokolov, V. N. (1999). Self-consistent method for optimization of parameters of diode temperature sensors. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2 (2), 15–27.
- Logvinenko, S. P., Alur, T. D., Zarochinceva, T. M. (1972). Termometricheskie harakteristiki smeshchennyh v pryamom napravlenii diodov iz Ge, Si, GaAs v intervale 4,2-300 K. Kriogennaya i vakuumnaya tehnika, 2, 69–78.
- Belyaev, A. E., Boltovets, N. S., Ivanov, V. N., Kamalov, A. B., Kapitanchuk, L. M., Konakova, R. V. et. al. (2008). Thermal-resistant TiB x -n-GaP Schottky diodes. Semiconductors, 42 (4), 453–457. doi: 10.1134/s1063782608040143
- Krasnov, V. A., Shutov, S. V., Shwarts, Y. M., Yerochin, S. Y. (2017). Determination of Ultimate Output Characteristics of Wide Bandgap Recombination-Mode Diode Temperature Sensors. Sensing and Imaging, 18 (1). doi: 10.1007/s11220-017-0178-3
- Sobolev, M. M., Nikitin, V. G. (1998). High-temperature diode formed by epitaxial GaP layers. Technical Physics Letters, 24 (5), 329–331. doi: 10.1134/1.1262110
- Lake Shore Cryotronics. Available at: https://www.lakeshore.com/Products/Cryogenic-Temperature-Sensors/Pages/default.aspx
- Ota, S. B., Ota, S. (2012). Calibration of GaAlAs Semiconductor Diode. Journal of Modern Physics, 03 (10), 1490–1493. doi: 10.4236/jmp.2012.310184
- Dalapati, P., Manik, N. B., Basu, A. N. (2013). Effect of temperature on the intensity and carrier lifetime of an AlGaAs based red light emitting diode. Journal of Semiconductors, 34 (9), 092001. doi: 10.1088/1674-4926/34/9/092001
- Erohin, S. Yu., Krasnov, V. A., Fonkich, A. M., Shvarc, Yu. M., Shutov, S. V. (2011). Shirokodiapazonnye termochuvstvitel'nye ehlementy datchikov temperatury na diodah AlGaAs. Tezisy 4-y Vserossiyskoy i stran-uchastnic KOOMET konferencii po problemam termometrii “Temperatura – 2011”. Sankt-Peterburg, 70–71.
- Zakheim, D. A., Itkinson, G. V., Kukushkin, M. V., Markov, L. K., Osipov, O. V., Pavlyuchenko, A. S. et. al. (2014). High-power AlGaInN LED chips with two-level metallization. Semiconductors, 48 (9), 1254–1259. doi: 10.1134/s1063782614090267
- Skierbiszewski, C., Siekacz, M., Turski, H., Muzioł, G., Sawicka, M., Feduniewicz-Żmuda, A. et. al. (2012). AlGaN-Free Laser Diodes by Plasma-Assisted Molecular Beam Epitaxy. Applied Physics Express, 5 (2), 022104. doi: 10.1143/apex.5.022104
- Liao, Y., Thomidis, C., Kao, C., Moustakas, T. D. (2011). AlGaN based deep ultraviolet light emitting diodes with high internal quantum efficiency grown by molecular beam epitaxy. Applied Physics Letters, 98 (8), 081110. doi: 10.1063/1.3559842
- Krasnov, V. A., Shwarts, Yu. M., Shwarts, M. M., Kopko, D. P., Erohin, S. Yu., Fonkich, A. M. et. al. (2008). Investigation of thermometrical characteristics of p+-n-GaP diodes. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 6 (78), 38–40.
- Yerochin, S. Yu., Krasnov, V. A., Shwarts, Yu. M., Shutov, S. V. (2007). Diodes based on epitaxial gallium phosphide for high temperature thermometry. Journal of Radio Electronics, 11. Available at: http://jre.cplire.ru/jre/nov07/2/text.html
- Shvarc, Yu. M., Ivashchenko, A. N., Shvarc, M. M., Kopko, D. P., Kartashev, V. I., Lucenko, N. D. (2007). Metrologicheskoe obespechenie diodnoy termometrii. Pribory, 8 (86), 5–11.
- Erohin, S. Yu., Krasnov, V. A., Shvarc, Yu. M. (2011). Termometricheskie harakteristiki diodov na osnove GaAs i tverdyh rastvorov AlGaAs. Zbirnyk tez konferentsiyi molodykh vchenykh z fizyky napivprovidnykiv “Lashkarovski chytannia – 2011”. Kyiv, 170–172.
- Erohin, S. Yu., Krasnov, V. A., Fonkich, A. M., Shvarc, Yu. M., Shutov, S. V. (2012). Termochuvstvitel'nye ehlementy vysokotemperaturnyh diodnyh datchikov temperatury na osnove tverdyh rastvorov AlGaAs. Materialy I Mizhnarodnoi naukovo-praktychnoi konferentsiyi “Aktualni problemy prykladnoi fizyky”. Sevastopol, 143–144.
- Krasnov, V. O., Yerokhin, S. Yu. (2009). Pat. No. 47826 UA. Sposib vyznachennia efektyvnoi kontsentratsiyi osnovnykh nosiyiv zariadu v bazi shyrokozonnoho dioda. MPK H01L 21/66, G01N27/22. No. u 200909097; declareted: 03.09.2009; published: 25.02.2010, Bul. No. 4. 4 p.
- Krasnov, V. A., Shutov, S. V., Shwarts, Y. M., Yerochin, S. Y. (2011). Note: Determination of temperature dependence of GaP bandgap energy from diode temperature response characteristics. Review of Scientific Instruments, 82 (8), 086109. doi: 10.1063/1.3626902
- Adirovich, E. I., Karageorgiy-Alkalaev, P. M., Leyderman, A. Yu. (1979). Toki dvoynoy inzhekcii v poluprovodnikah. Moscow: Sovetskoe radio, 320.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Vasily Krasnov, Sergey Yerochin, Oleksii Demenskyi, Gennadii Krapyvko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.