Development of diode temperature sensors with operating range up to 750 K

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.133811

Keywords:

diode temperature sensors, diode thermometry, thermometric characteristic, thermal sensitivity, liquid-phase epitaxy

Abstract

The problem of expansion of the range of functioning of diode thermosensors in the region of high temperatures is considered and some of the results of the author’s research in this area are given. To solve this problem, it is proposed to use diode structures based on wide bandgap semiconductor compounds in the III-V system. The technological method of producing prototypes of high-temperature diode temperature sensors based on GaP is developed. The presented method allows manufacturing samples of diode temperature sensors, the high-temperature limit of which exceeds the limit of functioning of commercial silicon diode temperature sensors by about 200–300 K. The experimental methods of obtaining epitaxial structures of solid solutions of AlGaAs and fabricating diode temperature sensors based on them are developed. It is shown that the approach chosen in this work allows extending the thermometric characteristics of such diodes in the high-temperature region by approximately 150–250 K. The paper presents the methodology for forming InGaN device structures and production of prototype high-temperature diode temperature sensors based on them. This technique with revisions can be used for the manufacture of diode temperature sensors and other devices for high-temperature applications, the entire range of solid solutions in the InN-GaN system. The parameters and characteristics of the obtained diode temperature sensors are investigated. The results of the research can be used by specialists in the field of electronics and optoelectronics in the development and production of semiconductor devices.

Author Biographies

Vasily Krasnov, V. E. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine Zavodskaya str., 76/78, Kherson, Ukraine, 73008

PhD, Senior Researcher

Laboratory No. 23 Materials Technology for Optoelectronics

Sergey Yerochin, V. E. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine Zavodskaya str., 76/78, Kherson, Ukraine, 73008

Researcher

Laboratory No. 23 Materials Technology for Optoelectronics

Oleksii Demenskyi, V. E. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine Zavodskaya str., 76/78, Kherson, Ukraine, 73008

Junior Researcher

Laboratory No. 23 Materials Technology for Optoelectronics

Gennadii Krapyvko, Kherson state maritime academy Ushakova ave., 20, Kherson, Ukraine, 73000

PhD, Associate Professor

Department of innovative technologies and technical equipment of navigation

References

  1. Zhang, N., Lin, C.-M., Rao, Y., Senesky, D. G., Pisano, A. P. (2014). 4H-SiC PN diode for extreme environment temperature sensing applications. Sensors for Extreme Harsh Environments. doi: 10.1117/12.2050768
  2. Sclar, N., Pollock, D. B. (1972). On diode thermometers. Solid-State Electronics, 15 (5), 473–480. doi: 10.1016/0038-1101(72)90149-9
  3. Shwarts, Yu. М., Shwarts, M. M. (2005). Microelectronic thermodiode sensors of extreme electronics. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 3, 30–33.
  4. Kulish, N. R., Shwarts, Yu. M., Borblik, V. L., Venger, Ye. F., Sokolov, V. N. (1999). Self-consistent method for optimization of parameters of diode temperature sensors. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2 (2), 15–27.
  5. Logvinenko, S. P., Alur, T. D., Zarochinceva, T. M. (1972). Termometricheskie harakteristiki smeshchennyh v pryamom napravlenii diodov iz Ge, Si, GaAs v intervale 4,2-300 K. Kriogennaya i vakuumnaya tehnika, 2, 69–78.
  6. Belyaev, A. E., Boltovets, N. S., Ivanov, V. N., Kamalov, A. B., Kapitanchuk, L. M., Konakova, R. V. et. al. (2008). Thermal-resistant TiB x -n-GaP Schottky diodes. Semiconductors, 42 (4), 453–457. doi: 10.1134/s1063782608040143
  7. Krasnov, V. A., Shutov, S. V., Shwarts, Y. M., Yerochin, S. Y. (2017). Determination of Ultimate Output Characteristics of Wide Bandgap Recombination-Mode Diode Temperature Sensors. Sensing and Imaging, 18 (1). doi: 10.1007/s11220-017-0178-3
  8. Sobolev, M. M., Nikitin, V. G. (1998). High-temperature diode formed by epitaxial GaP layers. Technical Physics Letters, 24 (5), 329–331. doi: 10.1134/1.1262110
  9. Lake Shore Cryotronics. Available at: https://www.lakeshore.com/Products/Cryogenic-Temperature-Sensors/Pages/default.aspx
  10. Ota, S. B., Ota, S. (2012). Calibration of GaAlAs Semiconductor Diode. Journal of Modern Physics, 03 (10), 1490–1493. doi: 10.4236/jmp.2012.310184
  11. Dalapati, P., Manik, N. B., Basu, A. N. (2013). Effect of temperature on the intensity and carrier lifetime of an AlGaAs based red light emitting diode. Journal of Semiconductors, 34 (9), 092001. doi: 10.1088/1674-4926/34/9/092001
  12. Erohin, S. Yu., Krasnov, V. A., Fonkich, A. M., Shvarc, Yu. M., Shutov, S. V. (2011). Shirokodiapazonnye termochuvstvitel'nye ehlementy datchikov temperatury na diodah AlGaAs. Tezisy 4-y Vserossiyskoy i stran-uchastnic KOOMET konferencii po problemam termometrii “Temperatura – 2011”. Sankt-Peterburg, 70–71.
  13. Zakheim, D. A., Itkinson, G. V., Kukushkin, M. V., Markov, L. K., Osipov, O. V., Pavlyuchenko, A. S. et. al. (2014). High-power AlGaInN LED chips with two-level metallization. Semiconductors, 48 (9), 1254–1259. doi: 10.1134/s1063782614090267
  14. Skierbiszewski, C., Siekacz, M., Turski, H., Muzioł, G., Sawicka, M., Feduniewicz-Żmuda, A. et. al. (2012). AlGaN-Free Laser Diodes by Plasma-Assisted Molecular Beam Epitaxy. Applied Physics Express, 5 (2), 022104. doi: 10.1143/apex.5.022104
  15. Liao, Y., Thomidis, C., Kao, C., Moustakas, T. D. (2011). AlGaN based deep ultraviolet light emitting diodes with high internal quantum efficiency grown by molecular beam epitaxy. Applied Physics Letters, 98 (8), 081110. doi: 10.1063/1.3559842
  16. Krasnov, V. A., Shwarts, Yu. M., Shwarts, M. M., Kopko, D. P., Erohin, S. Yu., Fonkich, A. M. et. al. (2008). Investigation of thermometrical characteristics of p+-n-GaP diodes. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 6 (78), 38–40.
  17. Yerochin, S. Yu., Krasnov, V. A., Shwarts, Yu. M., Shutov, S. V. (2007). Diodes based on epitaxial gallium phosphide for high temperature thermometry. Journal of Radio Electronics, 11. Available at: http://jre.cplire.ru/jre/nov07/2/text.html
  18. Shvarc, Yu. M., Ivashchenko, A. N., Shvarc, M. M., Kopko, D. P., Kartashev, V. I., Lucenko, N. D. (2007). Metrologicheskoe obespechenie diodnoy termometrii. Pribory, 8 (86), 5–11.
  19. Erohin, S. Yu., Krasnov, V. A., Shvarc, Yu. M. (2011). Termometricheskie harakteristiki diodov na osnove GaAs i tverdyh rastvorov AlGaAs. Zbirnyk tez konferentsiyi molodykh vchenykh z fizyky napivprovidnykiv “Lashkarovski chytannia – 2011”. Kyiv, 170–172.
  20. Erohin, S. Yu., Krasnov, V. A., Fonkich, A. M., Shvarc, Yu. M., Shutov, S. V. (2012). Termochuvstvitel'nye ehlementy vysokotemperaturnyh diodnyh datchikov temperatury na osnove tverdyh rastvorov AlGaAs. Materialy I Mizhnarodnoi naukovo-praktychnoi konferentsiyi “Aktualni problemy prykladnoi fizyky”. Sevastopol, 143–144.
  21. Krasnov, V. O., Yerokhin, S. Yu. (2009). Pat. No. 47826 UA. Sposib vyznachennia efektyvnoi kontsentratsiyi osnovnykh nosiyiv zariadu v bazi shyrokozonnoho dioda. MPK H01L 21/66, G01N27/22. No. u 200909097; declareted: 03.09.2009; published: 25.02.2010, Bul. No. 4. 4 p.
  22. Krasnov, V. A., Shutov, S. V., Shwarts, Y. M., Yerochin, S. Y. (2011). Note: Determination of temperature dependence of GaP bandgap energy from diode temperature response characteristics. Review of Scientific Instruments, 82 (8), 086109. doi: 10.1063/1.3626902
  23. Adirovich, E. I., Karageorgiy-Alkalaev, P. M., Leyderman, A. Yu. (1979). Toki dvoynoy inzhekcii v poluprovodnikah. Moscow: Sovetskoe radio, 320.

Downloads

Published

2018-06-18

How to Cite

Krasnov, V., Yerochin, S., Demenskyi, O., & Krapyvko, G. (2018). Development of diode temperature sensors with operating range up to 750 K. Eastern-European Journal of Enterprise Technologies, 3(5 (93), 19–25. https://doi.org/10.15587/1729-4061.2018.133811

Issue

Section

Applied physics