Development of a miniature microwave radiothermograph for monitoring the internal brain temperature

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.134130

Keywords:

microwave radiothermometry, temperature monitoring, printed antenna, medical radiothermograph, radiobrightness temperature, medical robotics

Abstract

To improve efficiency of non-invasive monitoring of the internal brain temperature, a small-size single-channel microwave radiothermograph consisting of a miniature radiometer and a radiometric sensor based on a printed antenna was developed. Such solution is necessary to provide physicians with a system of non-invasive monitoring of diagnosis and treatment processes. Mathematical modeling and experimental verification of the technical solutions obtained are described in this paper. A miniature radiothermometer was developed. It is a balance modulation radiometer designed on the basis of the R.H. Dicke’s circuit with two loads. Taking into account the requirements of miniaturization, a radiometric sensor was developed by means of numerical simulation. As a result of calculations, optimum antenna dimensions were determined (the total size: ø30 mm, the size of the foil flane substrate: ø23 mm, dimensions of the emitter slot: 16 mm×2 mm). According to the mathematical modeling, the depth of detection of thermal anomalies was not less than 20 mm for the printed antenna which is practically the same as for the waveguide antenna successfully used at present in brain radiothermometry.

The standing wave coefficient was determined for various head regions: frontal, temporal, parietal, occipital and the transient between the occipital and parietal regions. Experimental tests of the radiothermograph on water phantoms and biological objects have been carried out. A very good coincidence between the data of numerical simulation and the physical SWR experiment in a range of 1.04–1.8 was obtained. As a result of the study, it has been found that the radiothermograph with a printed slot antenna enabled measurement of internal brain temperature with an acceptable accuracy (±0.2 °C). This will ensure control of craniocerebral hypothermia in patients with brain stroke and allow doctors to promptly change the hypothermia tactics. Small size of the created unit will make it possible to combine it with medical robotic systems to improve treatment effectiveness.

Author Biographies

Mikhail Sedankin, FGBU "GNIIIT RT" of the Ministry of Defense of the Russian Federation Seregina str., 5, Moscow, Russia, 125167

PhD, Researcher

Department of collection, processing and analysis of test results of robotic complexes

Daria Chupina, Bauman Moscow State Technical University 2-ya Baumanskaya str., 5, Moscow, Russia, 105005

Department of Medical and technical information technologies

Sergey Vesnin, LLC "RTM Diagnostics» Bol'shaya Pochtovaya str., 55/59, Moscow, Russia, 105082

PhD, Chief Designer

Igor Nelin, Moscow Aviation Institute Volokolamskoe highway, 4, Moscow, Russia, 125993

PhD, Assistant professor

Department of Radiolocation, radio navigation and on-board radio electronic equipment

Victor Skuratov, VNIIRT Bol'shaya Pochtovaya, str., 22, Moscow, Russia, 105082

Engineer, Researcher

References

  1. Starodubceva, O. S., Begicheva, S. V. (2012). Analiz zabolevaemosti insul'tom s ispol'zovaniem informacionnyh tekhnologiy. Medicinskie nauki. Fundamental'nye issledovaniya, 8, 424–427.
  2. Feigin, V. L., Forouzanfar, M. H., Krishnamurthi, R., Mensah, G. A., Connor, M., Bennett, D. A. et. al. (2014). Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. The Lancet, 383 (9913), 245–255. doi: 10.1016/s0140-6736(13)61953-4
  3. Gusev, E. I. (2003). Problema insul'ta v Rossii. Zhurnal nevrologii i psihiatrii, 3, 3–10.
  4. Lisickiy, V. N., Kalenova, I. E., Boyarincev, V. V., Pas'ko, V. G., Bazarova, M. B., Sharinova, I. A. (2013). Kraniocerebral'naya gipotermiya kak perspektivniy metod neyroprotekcii na dogospital'nom etape okazaniya medicinskoy pomoshchi. Kremlevskaya medicina. Klinicheskiy vestnik, 2, 197–202.
  5. Winter, L., Oberacker, E., Paul, K., Ji, Y., Oezerdem, C., Ghadjar, P. et. al. (2015). Magnetic resonance thermometry: Methodology, pitfalls and practical solutions. International Journal of Hyperthermia, 32 (1), 63–75. doi: 10.3109/02656736.2015.1108462
  6. Gensler, D., Fidler, F., Ehses, P., Warmuth, M., Reiter, T., Düring, M. et. al. (2012). MR safety: FastT1thermometry of the RF-induced heating of medical devices. Magnetic Resonance in Medicine, 68 (5), 1593–1599. doi: 10.1002/mrm.24171
  7. Craciunescu, O. I., Stauffer, P. R., Soher, B. J., Wyatt, C. R., Arabe, O., Maccarini, P. et. al. (2009). Accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas. Medical Physics, 36 (11), 4848–4858. doi: 10.1118/1.3227506
  8. Barrett, A., Myers, P. (1975). Subcutaneous temperatures: a method of noninvasive sensing. Science, 190 (4215), 669–671. doi: 10.1126/science.1188361
  9. Kublanov, V. S., Borisov, V. I., Dolganov, A. Yu. (2016). Primenenie mul'tifraktal'nogo formalizma pri issledovanii roli vegetativnoy regulyacii v formirovanii sobstvennogo elektromagnitnogo izlucheniya golovnogo mozga. Medicinskaya tekhnika, 1, 21–24.
  10. Leushin, V. Yu., Gudkov, A. G., Korolev, A. V., Leushin, V. Yu., Plyushchev, V. A., Popov, V. V., Sidorov, I. A. (2014). Prognozirovanie kachestva i nadezhnosti IS SVCh na etapah razrabotki i proizvodstva. Mashinostroitel', 6, 38–46.
  11. Karathanasis, K. T., Gouzouasis, I. A., Karanasiou, I. S., Giamalaki, M. I., Stratakos, G., Uzunoglu, N. K. (2010). Noninvasive Focused Monitoring and Irradiation of Head Tissue Phantoms at Microwave Frequencies. IEEE Transactions on Information Technology in Biomedicine, 14 (3), 657–663. doi: 10.1109/titb.2010.2040749
  12. Asimakis, N. P., Karanasiou, I. S., Uzunoglu, N. K. (2011). Non-invasive microwave radiometric system for intracranial applications: a study using the conformal l-notch microstrip patch antenna. Progress In Electromagnetics Research, 117, 83–101. doi: 10.2528/pier10122208
  13. Stauffer, P. R., Rodrigues, D. B., Maccarini, P. F. (2014). Utility of microwave radiometry for diagnostic and therapeutic applications of non-invasive temperature monitoring. 2014 IEEE Benjamin Franklin Symposium on Microwave and Antenna Sub-Systems for Radar, Telecommunications, and Biomedical Applications (BenMAS). doi: 10.1109/benmas.2014.7529480
  14. Cheboksarov, D. V., Butrov, A. V., Shevelev, O. A., Amcheslavskiy, V. G., Pulina, N. N., Buntina, M. A., Sokolov, I. M. (2015). Diagnosticheskie vozmozhnosti neinvazivnogo termomonitoringa golovnogo mozga. Anesteziologiya i reanimatologiya, 1, 66–69.
  15. Vesnin, S. G., Sedankin, M. K., Pashkova, N. A. (2015). Matematicheskoe modelirovanie sobstvennogo izlucheniya golovnogo mozga cheloveka v mikrovolnovom diapazone. Biomedicinskaya radioelektronika, 3, 17–32.
  16. Sedankin, M. K. (2013). Antenny-applikatory dlya radiotermometricheskogo issledovaniya teplovyh poley vnutrennih tkaney biologicheskogo ob'ekta. Moscow, 247.
  17. Lee, J.-W., Kim, K.-S., Lee, S.-M., Eom, S.-J., Troitsky, R. V. (2002). A novel design of thermal anomaly for mammary gland tumor phantom for microwave radiometer. IEEE Transactions on Biomedical Engineering, 49 (7), 694–699. doi: 10.1109/tbme.2002.1010853
  18. Bardati, F., Iudicello, S. (2008). Modeling the Visibility of Breast Malignancy by a Microwave Radiometer. IEEE Transactions on Biomedical Engineering, 55 (1), 214–221. doi: 10.1109/tbme.2007.899354
  19. Beaucamp-Ricard, C., Dubois, L., Vaucher, S., Cresson, P.-Y., Lasri, T., Pribetich, J. (2009). Temperature Measurement by Microwave Radiometry: Application to Microwave Sintering. IEEE Transactions on Instrumentation and Measurement, 58 (5), 1712–1719. doi: 10.1109/tim.2008.2009189
  20. Jacobsen, S., Rolfsnes, H. O., Stauffer, P. R. (2005). Characteristics of Microstrip Muscle-Loaded Single-Arm Archimedean Spiral Antennas as Investigated by FDTD Numerical Computations. IEEE Transactions on Biomedical Engineering, 52 (2), 321–330. doi: 10.1109/tbme.2004.840502
  21. Sedankin, M. K., Novov, A. A., Abidulin, E. R. (2017). Trekhkanal'naya mikrovolnovaya antenna dlya urologii. Mezhdunarodnaya nauchno-tekhnicheskaya konferenciya «Informatika i tekhnologii. Innovacionnye tekhnologii v promyshlennosti i informatike». Moscow, 289–291.
  22. Klemetsen, O., Birkelund, Y., Maccarini, P. F., Stauffer, P., Jacobsen, S. K. (2010). Design of small-sized and low-cost front end to medical microwave radiometer. Prog Electromagn Res Symp., 932–936.
  23. Dicke, R. H. (1946). The Measurement of Thermal Radiation at Microwave Frequencies. Review of Scientific Instruments, 17 (7), 268–275. doi: 10.1063/1.1770483
  24. Vaysblat, A. V. (2001). Medicinskiy radiotermometr. Biomedicinskie tekhnologii i radioelektronika, 8, 3–9.
  25. Zakirov, A., Belousov, S., Valuev, I., Levchenko, V., Perepelkina, A., Zempo, Y. (2017). Using memory-efficient algorithm for large-scale time-domain modeling of surface plasmon polaritons propagation in organic light emitting diodes. Journal of Physics: Conference Series, 905, 012030. doi: 10.1088/1742-6596/905/1/012030
  26. Valuev, I., Deinega, A., Knizhnik, A., Potapkin, B. (2007). Creating Numerically Efficient FDTD Simulations Using Generic C++ Programming. Lecture Notes in Computer Science, 213–226. doi: 10.1007/978-3-540-74484-9_19
  27. Valuev, I., Belousov, S., Bogdanova, M., Kotov, O., Lozovik, Y. (2016). FDTD subcell graphene model beyond the thin-film approximation. Applied Physics A, 123 (1). doi: 10.1007/s00339-016-0635-1

Downloads

Published

2018-06-18

How to Cite

Sedankin, M., Chupina, D., Vesnin, S., Nelin, I., & Skuratov, V. (2018). Development of a miniature microwave radiothermograph for monitoring the internal brain temperature. Eastern-European Journal of Enterprise Technologies, 3(5 (93), 26–36. https://doi.org/10.15587/1729-4061.2018.134130

Issue

Section

Applied physics