Experimental investigation of the fire­extinguishing system with a gas­detonation charge for fluid acceleration

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.134193

Keywords:

pulsed fire-extinguishing plant, extinguishing agent, gas-detonation charge, fire extinguishing distance, dispersion of atomization

Abstract

To improve the parameters of pulsed fire-extinguishing plants for long-range and mass and dimensional indicators, it was proposed to replace the pneumatic propellant charge with the gas-detonation charge. The charge is formed based on the technical propane-butane mixture with oxygen, and detonation combustion of the mixture was achieved through the application of the electric discharge system of detonation initiation.

It was experimentally proved that the use of the gas-detonation charge instead of the pneumatic charge in pulsed fire-extinguishing plants makes it possible to improve their parameters. An increase in long-range of a water jet, which was achieved in the developed plant, decreases the impact of heat radiation on a rescuer, which ensures the feasibility of application of such systems for fighting large-scale fires. A decrease in gas pressure in cylinders due to transition from compression energy to chemical combustion energy ensures a decrease in the equipment weight and an increase in the number of shots with the extinguishing agent with the same dimensions of similar plants with the pneumatic charge. Specifically, in the plant with the gas-detonation charge, effective fire extinguishing distance, depending on the initial pressure of the charge within 0.1÷0.3 MPa was from 8 to 19 meters for the mass of the extinguishing agent of 1 kg and from 5 to 14 meters for the mass of the extinguishing agent of 2 kg.

The parameters of the electric discharge system, which ensure detonation initiation with minimal electricity consumption, were determined. Specifically, in the case of the use of a special spark plug by two synchronized spark discharges, at complete energy of the charge of 15 J and application of the capacitor of 1.75 µF and inductivity of the discharge curciut of 400 nH, detonation occurs in the pipe of the diameter of 73 mm under conditions of the conducted research at the distance of not more than 180 mm.

The obtained results could be used in designing the plants with a gas-detonation charge.

Author Biographies

Kostyantyn Korytchenko, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Senior Researcher

Department of Electrical Engineering

Oleksandr Sakun, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Senior Researcher

Department of military training

Dmytro Dubinin, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Department of fire tactics and rescue operations

Yurij Khilko, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Department of fire tactics and rescue operations

Evgen Slepuzhnikov, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Department of special chemistry and chemical technology

Andriy Nikorchuk, National Academy of National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkіv, Ukraine, 61001

PhD

Scientific and Research Center of Service and Military Activities of the National Guard

Ivan Tsebriuk, National Academy of National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkіv, Ukraine, 61001

PhD, Associate professor

Department of operation and repair of cars and combat vehicles

References

  1. Zvit pro osnovni rezultaty diyalnosti Derzhavnoi sluzhby Ukrainy z nadzvychainykh sytuatsiy u 2017 rotsi. Available at: http://www.dsns.gov.ua/files/2018/1/26/Zvit%202017(КМУ).pdf
  2. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 11–16. doi: 10.15587/1729-4061.2017.114504
  3. Vasiliev, M., Movchan, I., Koval, O. (2014). Diminishing of ecological risk via optimization of fire-extinguishing system projects in timber-yards. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 106–113.
  4. Migalenko, K., Nuianzin, V., Zemlianskyi, A., Dominik, A., Pozdieiev, S. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 31–37. doi: 10.15587/1729-4061.2018.121727
  5. Abramov, Yu. A., Rosoha, V. E., Shapovalova, E. A. (2001). Modelirovanie processov v pozharnyh stvolah. Kharkiv: Folio, 195.
  6. Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 50–56. doi: 10.15587/1729-4061.2017.117789
  7. Kruglov, A. V., Trapeznikov, Yu. M. (2010). Ustanovki impul'snogo pozharotusheniya dlya podavleniya moshchnyh udalennyh pozharov. Izobretatel'stvo, 10 (11), 27–32.
  8. Semko, A., Beskrovnaya, M., Vinogradov, S., Hritsina, I., Yagudina, N. (2014). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52 (3), 655–664.
  9. Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: 10.1260/1750-9548.9.1.9
  10. Gleich, A. (2011). Pаt. No. DE102011003233A1. Device for extinguishing fires by explosion-propelled ejection of fire extinguishing agent, has explosive charge that is arranged at device for creation of pressure wave. No. 102011003233; declareted: 27.01.2011; published: 02.08.2012.
  11. Zakhmatov, V. D., Silnikov, M. V., Chernyshov M. V. (2016). Overview of impulse fire-extinguishing system applications. Journal of Industrial Pollution Control, 32 (2), 490–499.
  12. IFEX. Available at: http://www.ifexindia.in
  13. Vinogradov, S., Larin, A., Kalynovsky, A., Rudenko, S. (2016). Approaches to Extinguish Gas Blowout Fires: World Experience and Potential for Development. Bezpieczeństwo i Technika Pożarnicza, 41 (1), 19–26.
  14. Scarponi, C., Romanelli, E., Andreotti, C., Xefteris, P. (2009). Pаt. No. WO2009104142A1. Transportable impulse fire extinguishing system. No. 050659; declareted: 18.02.2009; published: 27.08.2009.
  15. Artamonov, A. S. (2015). Pat. No. 2593538 RF. Vzryv-gidravlicheskaya pushka. No. 2015139187/13; declareted: 14.09.2015; published: 10.08.2016, Bul. No. 22, 13.
  16. Zheng, L., Quan, W. (2011). Experimental Study of Explosive Water Mist Extinguishing Fire. Procedia Engineering, 11, 258–267. doi: 10.1016/j.proeng.2011.04.655
  17. Sakun, A. V., Hil'ko, Yu. V., Korytchenko, K. V. (2014). Chislennoe modelirovanie vnutriballisticheskih processov v gazodetonacionnoy ustanovke metaniya tushashchih veshchestv. Problemy pozharnoy bezopasnosti, 36, 208–217.
  18. Korytchenko, K. V., Poklonskii, E. V., Krivosheev, P. N. (2014). Model of the spark discharge initiation of detonation in a mixture of hydrogen with oxygen. Russian Journal of Physical Chemistry B, 8 (5), 692–700. doi: 10.1134/s1990793114050169
  19. Korytchenko, K. V., Sakun, A. V., Khylko, Yu. V., Kisternyi, Yu. I., Kudin, D. V. (2015). Eksperymentalne doslidzhennia prototypu hazodetonatsiynoi ustanovky metannia konteineriv z vohnehasnymy rechovynamy. Problemy pozharnoy bezopasnosti, 37, 108–115.
  20. Sakun, A. V., Khylko, Yu. V., Korytchenko, K. V., Belousov, I. O., Isakov, O. V. (2015). Eksperymentalne doslidzhennia systemy metannia hazo-detonatsiynym zariadom. Mekhanika ta mashynobuduvannia, 1, 128–134.
  21. Operating Manual HP 5890 Series II and HP 5890 Series II Plus. Available at: http://photos.labwrench.com/equipmentManuals/128-6712.pdf
  22. Korytchenko, K. V., Golota, V. I., Kudin, D. V., Sakun, O. V. (2015). Numerical simulation of the energy distribution into the spark at the direct detonation initiation. Problems of Atomic Science and Technology, 3, 154–158.
  23. Lenkevich, D. A., Golovastov, S. V., Golub, V. V., Bocharnikov, V. M., Bivol, G. Yu. (2014). Parametricheskoe issledovanie rasprostraneniya detonacii v uzkih kanalah, zapolnennyh smes'yu propan-butan-kislorod. Teplofizika vysokih temperatur, 52 (6), 916–920. doi: 10.7868/s0040364414040164
  24. Zhang, B., Ng, H. D., Lee, J. H. S. (2011). Measurement of effective blast energy for direct initiation of spherical gaseous detonations from high-voltage spark discharge. Shock Waves, 22 (1), 1–7. doi: 10.1007/s00193-011-0342-y
  25. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2018). Improving the installation for fire extinguishing with finely­dispersed water. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 38–43. doi: 10.15587/1729-4061.2018.127865
  26. Ustanovka impul'snogo pozharotusheniya «VITYAZ'» UIP-1. Rukovodstvo po ekspluatacii ZR 500.00.00 RE. Available at: http://www.vityas.com/data/flame/uip1manual.pdf
  27. Kropyvnytskyi, V. S. (Ed.) (2016). Dovidnyk kerivnyka hasinnia pozhezhi. Kyiv, 320.
  28. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 50–55. doi: 10.15587/1729-4061.2018.122419
  29. Riabova, I. B., Saichuk, I. V., Sharshanov, A. Ya. (2004). Termodynamika ta teploperedacha u pozhezhniy spravi. Kharkiv, 352.
  30. Andronov, V., Pospelov, B., Rybka, E. (2016). Increase of accuracy of definition of temperature by sensors of fire alarms in real conditions of fire on objects. Eastern-European Journal of Enterprise Technologies, 4 (5 (82)), 38–44. doi: 10.15587/1729-4061.2016.75063

Downloads

Published

2018-06-19

How to Cite

Korytchenko, K., Sakun, O., Dubinin, D., Khilko, Y., Slepuzhnikov, E., Nikorchuk, A., & Tsebriuk, I. (2018). Experimental investigation of the fire­extinguishing system with a gas­detonation charge for fluid acceleration. Eastern-European Journal of Enterprise Technologies, 3(5 (93), 47–54. https://doi.org/10.15587/1729-4061.2018.134193

Issue

Section

Applied physics