Improvement of the method for analysis of nonlinear electrotechnical systems based on the small parameter method

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.136398

Keywords:

nonlinear system, electrical circuit, analysis, small parameter method, frequency domain, automated algorithm

Abstract

The small parameter method, implemented in frequency domain, was used for the analytical analysis of nonlinear electrical circuits of electrotechnical systems. To have the possibility of calculations in frequency domain, the automated method of forming orthogonal harmonic components of electrical magnitudes based on the algorithm of discrete convolution was used. The characteristic of a nonlinear element was represented by the polynomial function of third degree. It was shown that application of the small parameter method with its realization in frequency domain makes it possible to simplify the process of analyzing electrical circuits with nonlinear elements by automating calculations in the mathematical package. Analytical and numerical calculations of a circuit with actively inductive load demonstrated sufficient accuracy of the proposed method, the relative error for the main harmonic of current did not exceed 6 %. The conducted comparative analysis of the proposed small parameter method with the classic small parameter method on the example of calculation of an electrical circuit with RL load showed that the developed method provides better adequacy of results and high calculation accuracy in comparison with the existing one. Relative error by amplitude of first and third harmonics of current does not exceed 2.5 %, and by phase, it does not exceed 1.042·10-3 %. The method of numerical structural modeling was used to determine the reference values of current of the researched circuit. The results of the research can be used in calculations of electrotechnical devices, containing semiconductor components and electrical devices with nonlinear characteristics. In addition, the obtained results will make it possible to improve the processes of active compensation of harmonics of current in electrical networks with nonlinear load and to develop the tools of passive compensation

Author Biography

Mariia Maliakova, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39600

PhD, Senior Lecturer

Department of Electric Machines and Devices

References

  1. Zaezdniy, A. M. (1973). Bases for nonlinear and parametric radio circuits. Moscow: Svyaz, 448.
  2. Shydlovska, N. (1999). Analysis of nonlinear electric circuits by the small parameter method. Kyiv: Evroindeks, 192.
  3. Bessonov, L. (2001). Theoretical foundations of electrical engineering. Electric circuits. Мoscow: Gardariki, 638.
  4. Zeveke, G., Ionkin, P., Netushil, А. et. al. (1975). Basics of circuit theory. Мoscow: Energiya, 752.
  5. Tonkal, V., Novoseltsev, А., Denisuk, S. et. al. (1992). Energy balance in the electric circuits. Kyiv: Naukova dumka, 312.
  6. Zhou, X., Zhou, D., Liu, J., Li, R., Zeng, X., Chiang, C. (2004). Steady-state analysis of nonlinear circuits using discrete singular convolution method. Proceedings Design, Automation and Test in Europe Conference and Exhibition. doi: https://doi.org/10.1109/date.2004.1269078
  7. Li, X., Hu, B., Ling, X., Zeng, X. (2001). A wavelet balance approach for steady-state analysis of nonlinear circuits. ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196). doi: https://doi.org/10.1109/iscas.2001.921249
  8. Zhu, L. (Lana), Christoffersen, C. E. (2006). Transient and Steady-State Analysis of Nonlinear RF and Microwave Circuits. EURASIP Journal on Wireless Communications and Networking, 2006, 1–11. doi: https://doi.org/10.1155/wcn/2006/32097
  9. Zagirnyak, M., Maliakova, M., Kalinov, A. (2015). Analysis of electric circuits with semiconductor converters with the use of a small parameter method in frequency domain. COMPEL – The international journal for computation and mathematics in electrical and electronic engineering, 34 (3), 808–823. doi: https://doi.org/10.1108/compel-10-2014-0260
  10. Zagirnyak, M., Kalinov, A., Maliakova, M. (2013). Analysis of instantaneous power components of electric circuit with a semiconductor element. Archives of Electrical Engineering, 62 (3). doi: https://doi.org/10.2478/aee-2013-0038
  11. Czarnecki, L. S. (2009). Effect of Supply Voltage Harmonics on IRP-Based Switching Compensator Control. IEEE Transactions on Power Electronics, 24 (2), 483–488. doi: https://doi.org/10.1109/tpel.2008.2009175
  12. Czarnecki, L. S. (2004). On some misinterpretations of the instantaneous reactive power p-q theory. IEEE Transactions on Power Electronics, 19 (3), 828–836. doi: https://doi.org/10.1109/tpel.2004.826500
  13. Zagirnyak, M., Maliakova, M., Kalinov, A. (2015). Analysis of operation of power components compensation systems at harmonic distortions of mains supply voltage. 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION). doi: https://doi.org/10.1109/optim.2015.7426958
  14. Zagirnyak, M., Maliakova, M., Kalinov, A. (2015). Compensation of higher current harmonics at harmonic distortions of mains supply voltage. 2015 16th International Conference on Computational Problems of Electrical Engineering (CPEE). doi: https://doi.org/10.1109/cpee.2015.7333388
  15. Al-Mashakbeh, A. S., Zagirnyak, M., Maliakova, M., Kalinov, A. (2017). Improvement of compensation method for non-active current components at mains supply voltage unbalance. Eastern-European Journal of Enterprise Technologies, 1 (8 (85)), 41–49. doi: https://doi.org/10.15587/1729-4061.2017.87316
  16. Zagirnyak, M., Kalinov, A., Chumachova, A. (2013). Correction of operating condition of a variable-frequency electric drive with a non-linear and asymmetric induction motor. Eurocon 2013. doi: https://doi.org/10.1109/eurocon.2013.6625108
  17. Prus, V., Nikitina, A., Zagirnyak, M., Miljavec, D. (2011). Research of rnergy processes in circuits containing iron in saturation condition. Przegląd Elektrotechniczny (Electrical Review), 87 (3), 149–152. Available at: http://pe.org.pl/articles/2011/3/39.pdf
  18. Zagirnyak, M. V., Rodkin, D. I., Korenkova, T. V. (2014). Estimation of energy conversion processes in an electromechanical complex with the use of instantaneous power method. 2014 16th International Power Electronics and Motion Control Conference and Exposition. doi: https://doi.org/10.1109/epepemc.2014.6980719
  19. Al-Mashakbeh, A. (2016). A diagnostic of induction motors supplied using frequency converter basing on current and power signal analysis. Przegląd Elektrotechniczny, 1 (12), 7–10. doi: https://doi.org/10.15199/48.2016.12.02
  20. Zagirnyak, M., Mamchur, D., Kalinov, A. (2014). A comparison of informative value of motor current and power spectra for the tasks of induction motor diagnostics. 2014 16th International Power Electronics and Motion Control Conference and Exposition. doi: https://doi.org/10.1109/epepemc.2014.6980549
  21. Zagirnyak, M. (2017). An analytical method for calculation of passive filter parameters with the assuring of the set factor of the voltage supply total harmonic distortion. Przegląd Elektrotechniczny, 1 (12), 197–200. doi: https://doi.org/10.15199/48.2017.12.49
  22. Salmeron, P., Litran, S. P. (2010). Improvement of the Electric Power Quality Using Series Active and Shunt Passive Filters. IEEE Transactions on Power Delivery, 25 (2), 1058–1067. doi: https://doi.org/10.1109/tpwrd.2009.2034902
  23. Ginn, H. L., Czarnecki, L. S. (2006). An Optimization Based Method for Selection of Resonant Harmonic Filter Branch Parameters. IEEE Transactions on Power Delivery, 21 (3), 1445–1451. doi: https://doi.org/10.1109/tpwrd.2008.2009899
  24. Luchetta, A., Manetti, S., Reatti, A. (2001). SAPWIN-a symbolic simulator as a support in electrical engineering education. IEEE Transactions on Education, 44 (2). doi: https://doi.org/10.1109/13.925868
  25. Huelsman, L. P. (1996). SAPWIN, Symbolic analysis program for Windows – PC programs for engineers. IEEE Circuits and Devices Magazine, 6.
  26. Moura, L., Darwazeh, I. (2005). Introduction to linear circuit analysis and modelling from DC to RF, MatLAB and SPICE. Burlington, 405.
  27. Raju, A. B., Karnik, S. R. (2009). SEQUEL: A Free Circuit Simulation Software as an Aid in Teaching the Principles of Power Electronics to Undergraduate Students. 2009 Second International Conference on Emerging Trends in Engineering & Technology. doi: https://doi.org/10.1109/icetet.2009.200
  28. Pires, V. F., Silva, J. F. A. (2002). Teaching nonlinear modeling, simulation, and control of electronic power converters using MATLAB/SIMULINK. IEEE Transactions on Education, 45 (3), 253–261. doi: https://doi.org/10.1109/te.2002.1024618
  29. Chen, W.-K. (2009). Feedback, Nonlinear, and Distributed Circuits. CRC Press, New York, NY, 466.
  30. Zagirnyak, M., Kalinov, A., Maliakova, M. (2011). An algorithm for electric circuits calculation based on instantaneous power component balance. Przegląd Elektrotechniczny (Electrical Review), 87 (12), 212–215. Available at: http://pe.org.pl/articles/2011/12b/59.pdf
  31. Nayfeh, А. H., Chen, C.-Y. (1999). Perturbation methods with mathematica. Nonlinear dynamic. Wiley, 437.

Downloads

Published

2018-07-20

How to Cite

Maliakova, M. (2018). Improvement of the method for analysis of nonlinear electrotechnical systems based on the small parameter method. Eastern-European Journal of Enterprise Technologies, 4(5 (94), 6–13. https://doi.org/10.15587/1729-4061.2018.136398

Issue

Section

Applied physics