Theoretical rationale and identification of heat and mass transfer processes in vibration dryers with IR-energy supply

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.139314

Keywords:

heat and mass transfer, infrared energy supply, vibration dryer, oil-bearing grain, parametric identification

Abstract

The paper contains theoretical substantiation of the processes of radiation-convective heat and mass transfer between all the defining objects inside the vibration dryer with IR energy supply. The presented equations, developed on the basis of the heat and material balance, describe the basic dynamic characteristics of the drying mode for oil-bearing grain material in a continuously operating IR dryer.

Since there is no exact analytic solution of the presented mathematical model shaped as a system of differential equations with partial derivatives, the authors propose an approximate solution. The latter allows identifying the dependences between the distribution of temperature and moisture content of grain and oil-containing materials along the length of the dryer for any moment of time.

The numerical solution of the reduced mathematical model is possible only with the presence of certain interconnected kinetic coefficients. The kinetic coefficients can not be found experimentally by direct measurements; therefore, the article proposes a method to overcome these difficulties. The presented approximate analytical solution of the synthesized mathematical model, with the use of the method of inverse problems, has allowed determining sets of coefficients by the results of the experimental identification of dehydration. In the future, experimentally identified parametric complexes of the model can be used in the analysis of the drying process for approximate solutions or for further exact numerical solution.

Experimental studies of dehydration of grain material have proved that when the power of an IR source is increased from 400 to 500 W, the time for drying from the initial moisture content of 11 % to 8.75 % decreases from 9 to 7 minutes. It is determined that the Rebinder effect characterizing the dampness and thermal properties of the material decreases with a decrease in the moisture content from 0.04 at 11 % to 0.01 at 9 %. This is interesting from the practical point of view as the obtained results and the developed mathematical model can be used for increasing the energy efficiency of the processes of thermal drying in typical facilities that prepare oil-bearing grain materials for their processing.

Author Biographies

Valentyna Bandura, Vinnytsia National Agrarian University Soniachna str., 3, Vinnytsia, Ukraine, 21008

PhD, Professor

Department of Processes and equipment processing and food production named after prof. P. S. Bernik

Roman Kalinichenko, Separated Subdivision NULESU «Nizhyn Agrotechnical Institute» Shevchenka str., 10, Nizhyn, Ukraine, 16600

PhD, Associate Professor

Department of electrified technologies in agricultural production

Boris Kotov, State Agrarian and Engineering University of Podilya Shevchenka str., 13, Kamianets-Podilskyi, Ukraine, 32300

Doctor of Technical Sciences, Professor

Department of Energy and Electrotechnical Systems in Agroindustrial Complex

Anatoly Spirin, Vinnytsia National Agrarian University Soniachna str., 3, Vinnytsia, Ukraine, 21008

PhD, Associate Professor

Department of general technical disciplines and labor protection

References

  1. Kurdyumov, V. I., Pavlushin, A. A., Karpenko, G. V., Sutyagin, S. A. (2013). Teplovaya obrabotka zerna v ustanovkah kontaktnogo tipa. Ul'yanovsk, 290.
  2. Kalinichenko, R. A., Voitiuk, V. D. (2017). Enerhoefektyvni rezhymy roboty mashyn dlia vysokointensyvnoi termoobrobky zernovykh materialiv. Nizhyn, 261.
  3. Kiptelaya, L., Zahorulko, A., Zagorulko, A., Liashenko, B. (2017). Improvement of IR emitter to create non-reflector dryer for plant raw materials. Technology Audit and Production Reserves, 2 (3 (34)), 17–22. doi: https://doi.org/10.15587/2312-8372.2017.98068
  4. Das, I., Das, S. K., Bal, S. (2009). Drying kinetics of high moisture paddy undergoing vibration-assisted infrared (IR) drying. Journal of Food Engineering, 95 (1), 166–171. doi: https://doi.org/10.1016/j.jfoodeng.2009.04.028
  5. Burdo, O. G. (2010). Evolyuciya sushil'nih ustanovok. Odessa: Poligraf, 368.
  6. Rudobashta, S. P. Kartashov, E. M. (2009). Diffuziya v himiko-tekhnologicheskih processah. Moscow, 478.
  7. Coradi, P. C., Fernandes, C. H. P., Helmich, J. C. (2016). Adjustment of mathematical models and quality of soybean grains in the drying with high temperatures. Revista Brasileira de Engenharia Agrícola e Ambiental, 20 (4), 385–392. doi: https://doi.org/10.1590/1807-1929/agriambi.v20n4p385-392
  8. Kats, V. Y., Mazor, G. (2010). Drying of granules in vibrating suspended bed: Engineering simulation. Russian Journal of Applied Chemistry, 83 (9), 1707–1716. doi: https://doi.org/10.1134/s1070427210090399
  9. Nikitenko, N. I., Snezhkin, Y. F., Sorokovaya, N. N. (2008). Development of a theory and methods for calculating the heat and mass transfer in drying a porous body with multicomponent vapor and liquid phases. Journal of Engineering Physics and Thermophysics, 81 (6), 1153–1167. doi: https://doi.org/10.1007/s10891-009-0132-x
  10. Dubrovin, V., Kalinichenko, R., Kifyak, V. (2015). Modelirovanie dinamiki teplovih processov pri mikronizacii i sushenii zernoproduktov v termoradiacionnih ustanovkah IK-izlucheniem. Motrol: International journal on operation of farm and agri-food industry machinery, 17 (3), 150–157.
  11. Kotov, B. I., Kifiak, V. V., Kalinichenko, R. A. (2014). Matematychna model dynamichnykh rezhymiv elektrotermichnoi ustanovky dlia obrobky zernomaterialiv impulsnymy potokamy infrachervonoho vyprominiuvannia. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva imeni Petra Vasylenka, 152, 181–191.
  12. Istadi, I., Sitompul, J. P. (2002). A comprehensive mathematical and numerical modeling of deep-bed grain drying. Drying Technology, 20 (6), 1123–1142. doi: https://doi.org/10.1081/drt-120004043
  13. Korobka, S., Babych, M., Krygul, R., Tolstushko, N., Tolstushko, M. (2017). Research into technological process of convective fruit drying in a solar dryer. Eastern-European Journal of Enterprise Technologies, 3 (8 (87)), 55–63. doi: https://doi.org/10.15587/1729-4061.2017.103846
  14. Akulich, P. V. (2010). Raschety sushil'nyh i teploobmennyh ustanovok. Minsk, 443.
  15. Nikitenko, N. I., Snezhkin, Yu. F., Sorokovaya, N. N. et. al. (2011). Metod opredeleniya koefficienta diffuzii v poristyh sredah na osnove resheniya obratnoy zadachi massoperenosa. Naukovi pratsi Odeskoi natsionalnoi akademiyi kharchovykh tekhnolohiy, 39 (2), 17–22.
  16. Kotov, B. I., Kyfiak, V. V. (2014). Identyfikatsiya dynamichnykh rezhymiv nahrivu i sushinnia zernoproduktiv ICh-vyprominiuvanniam. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriya: Tekhnika ta enerhetyka APK, 194 (2), 165–170.

Downloads

Published

2018-07-24

How to Cite

Bandura, V., Kalinichenko, R., Kotov, B., & Spirin, A. (2018). Theoretical rationale and identification of heat and mass transfer processes in vibration dryers with IR-energy supply. Eastern-European Journal of Enterprise Technologies, 4(8 (94), 50–58. https://doi.org/10.15587/1729-4061.2018.139314

Issue

Section

Energy-saving technologies and equipment