Geometric modeling of the unfolding of a rod structure in the form of a double spherical pendulum in weightlessness

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.139595

Keywords:

rod structure, the process of unfolding in space, two-link rod structure, Lagrangian equation of the second kind

Abstract

We investigated the geometric model of the new technique for unfolding a rod structure, similar to the double spherical pendulum, in weightlessness. Displacements of elements occur due to the pulses from pyrotechnic jet engines acting on the endpoints of links. The motion of the obtained inertial unfolding of a rod structure was described using a Lagrange equation of the second kind. Given the conditions of weightlessness, it was built applying only the kinetic energy of the system.

The relevance of the chosen subject is emphasized by the need to choose and study the process of activation of the unfolding of a spatial rod structure. The proposed possible drivers are the pulse pyrotechnic jet engines installed at endpoints of the structure's links. They are lighter and cheaper compared, for example, to electric motors or spring devices. In addition, they are more efficient economically when the process of unfolding a structure in orbit is planned to be performed only once.

We propose a technique for determining the parameters and initial conditions for initiating the oscillations of a double rod structure in order to obtain a cyclic trajectory of the endpoint of the second link. That makes it possible to avoid, when calculating the process of transformation, the chaotic movements of the structure's elements. We built the time-dependent charts of change in the functions of generalized coordinates, as well as the first and second derivatives from these functions. Therefore, there is a possibility to estimate the force characteristics of the system at the moment of braking (locking) the process of unfolding.

The results are intended for the geometric modeling of one of the variants for unfolding the large-sized structures under conditions of weightlessness, for example, force frames for solar mirrors or space antennas, as well as other large-scale orbital infrastructures.

Author Biographies

Leonid Kutsenko, National University of Civil Defense of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Department of Engineering and Rescue Technology

Oleg Semkiv, National University of Civil Defense of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Vice-Rector

Department of prevention activities and monitoring

Vitalii Asotskyi, National University of Civil Defense of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Scientific and methodical center of educational institutions in the field of civil protection

Leonid Zapolskiy, Ukrainian Civil Protection Research Institute Rybalska str., 18, Kyiv, Ukraine, 01011

PhD, Senior Researcher

Department of Scientific and organizational

Olga Shoman, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Geometrical Modeling and Computer Graphics

Nelli Ismailova, Military Academy Fontanska doroha str., 10, Odessa, Ukraine, 65009

Doctor of Technical Sciences, Associate Professor

Department of Engineering Mechanics

Volodymyr Danylenko, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

Associate Professor

Department of Engineering and Computer Graphics

Stanislav Vinogradov, National University of Civil Defense of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Engineering and Rescue Technology

Elizaveta Sivak, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Geometrical Modeling and Computer Graphics

References

  1. Lu, S., Zlatanov, D., Ding, X., Molfino, R. (2014). A new family of deployable mechanisms based on the Hoekens linkage. Mechanism and Machine Theory, 73, 130–153. doi: https://doi.org/10.1016/j.mechmachtheory.2013.10.007
  2. Tibert, G. (2002). Deployable tensegrity structures for space applications. Stockholm, 242.
  3. Szuminski, W. (2012). Dynamics of multiple pendula. University of Zielona Gora, Olsztyn, 57.
  4. Szuminski, W. (2013). Dynamics of multiple pendula. University of Zielona Gora, Olsztyn, 32.
  5. Szuminski, W. (2014). Dynamics of multiple pendula without gravity. Conference: Conference: Chaos 2013, Volume: Chaotic Modeling and Simulation (CMSIM), 1, 57–67. Available at: https://www.researchgate.net/publication/285143816_Dynamics_of_multiple_pendula_without_gravity
  6. Martınez-Alfaro, H. Obtaining the dynamic equations, their simulation, and animation for N pendulums using Maple. Available at: http://www2.esm.vt.edu/~anayfeh/conf10/Abstracts/martinez-alfaro.pdf
  7. Lopes, A. M., Tenreiro Machado, J. A. (2016). Dynamics of the N-link pendulum: a fractional perspective. International Journal of Control, 90 (6), 1192–1200. doi: https://doi.org/10.1080/00207179.2015.1126677
  8. Yan, X., Fu-ling, G., Yao, Z., Mengliang, Z. (2012). Kinematic analysis of the deployable truss structures for space applications. Journal of Aerospace Technology and Management, 4 (4), 453–462. doi: https://doi.org/10.5028/jatm.2012.04044112
  9. Deployable Perimeter Truss with Blade Reel Deployment Mechanism (2016). NASA’s Jet Propulsion Laboratory, Pasadena, California. Available at: https://www.techbriefs.com/component/content/article/tb/techbriefs/mechanics-and-machinery/24098
  10. Bushuyev, A., Farafonov, B. (2014). Mathematical modeling of the process of disclosure of a large-scale solar battery. Mathematical Modeling and Numerical Methods, 2, 101–114.
  11. Schesnyak, S., Romanov, A. (2009). Designing and calculating large-scale unfolding structures using software packages MSC.Software. CADmaster, 2-3, 28–36.
  12. Boykov, V. (2009). Program complex of automated dynamic analysis of EULER multicomponent mechanical systems. CAD and graphics, 9, 17–20.
  13. Zimin, V., Krylov, A., Meshkovskii, V., Sdobnikov, A., Fayzullin, F., Churilin, S. (2014). Features of the Calculation Deployment Large Transformable Structures of Different Configurations. Science and Education of the Bauman MSTU, 10, 179–191. doi: https://doi.org/10.7463/1014.0728802
  14. Zel’dovich, B. Y., Soileau, M. J. (2004). Bi-frequency pendulum on a rotary platform: modeling various optical phenomena. Uspekhi Fizicheskih Nauk, 174 (12), 1337–1354. doi: https://doi.org/10.3367/ufnr.0174.200412e.1337
  15. Petrov, A. (2005). Asymptotic integration of Hamiltonian systems. Mechanics of the solid, 35, 84–91.
  16. Glukhikh, Y. (2005). Oscillations of a spherical pendulum with a vibrating suspension point. Mechanics of a rigid body, 35, 109–114.
  17. Loveykin, V., Rybalko, V., Melnichenko, V. (2011). Investigation of the fluctuations of cargo on a flexible suspension under the operation of the mechanism of rotation of the jib crane. Scientific Bulletin of the National University of Bioresources and Natural Resources of Ukraine, 166, 115–121.
  18. Jinglai Shen, Sanyal, A. K., Chaturvedi, N. A., Bernstein, D., McClamroch, H. (2004). Dynamics and control of a 3D pendulum. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601). doi: https://doi.org/10.1109/cdc.2004.1428650
  19. Chaturvedi, N. A., McClamroch, N. H. (2007). Asymptotic stabilization of the hanging equilibrium manifold of the 3D pendulum. International Journal of Robust and Nonlinear Control, 17 (16), 1435–1454. doi: https://doi.org/10.1002/rnc.1178
  20. Chaturvedi, N. A., Lee, T., Leok, M., McClamroch, N. H. (2010). Nonlinear Dynamics of the 3D Pendulum. Journal of Nonlinear Science, 21 (1), 3–32. doi: https://doi.org/10.1007/s00332-010-9078-6
  21. Náprstek, J., Fischer, C. (2013). Types and stability of quasi-periodic response of a spherical pendulum. Computers & Structures, 124, 74–87. doi: https://doi.org/10.1016/j.compstruc.2012.11.003
  22. Consolini, L., Tosques, M. (2009). On the exact tracking of the spherical inverted pendulum via an homotopy method. Systems & Control Letters, 58 (1), 1–6. doi: https://doi.org/10.1016/j.sysconle.2008.06.010
  23. Anan’evskii, I. M., Anokhin, N. V. (2014). Control of the spatial motion of a multilink inverted pendulum using a torque applied to the first link. Journal of Applied Mathematics and Mechanics, 78 (6), 543–550. doi: https://doi.org/10.1016/j.jappmathmech.2015.04.001
  24. Lee, T., Leok, M., McClamroch, N. H. (2012). Dynamics and control of a chain pendulum on a cart. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC). doi: https://doi.org/10.1109/cdc.2012.6427059
  25. Xinjilefu, Hayward, V., Michalska, H. (2010). Hybrid Stabilizing Control for the Spatial Double Inverted Pendulum. Brain, Body and Machine, 201–215. doi: https://doi.org/10.1007/978-3-642-16259-6_16
  26. Egger, P., Caracoglia, L. (2015). Analytical and experimental investigation on a multiple-mass-element pendulum impact damper for vibration mitigation. Journal of Sound and Vibration, 353, 38–57. doi: https://doi.org/10.1016/j.jsv.2015.05.003
  27. Ludwicki, M., Kudra, G., Awrejcewicz, J. Axially excited spatial double pendulum nonlinear dynamics. Available at: https://www.researchgate.net/profile/Jan_Awrejcewicz/publication/288669893_Axially_excited_spatial_double_pendulum_nonlinear_dynamics/links/568b788908ae051f9afb07e4/Axially-excited-spatial-double-pendulum-nonlinear-dynamics.pdf
  28. Marsden, J., Scheurle, J., Wendlandt, J. Visualization of Orbits and Pattern Evocation for the Double Spherical Pendulum. Available at: https://authors.library.caltech.edu/20096/1/MaScWe1996(2).pdf
  29. Marsden, J. E., Scheurle, J. (1993). Lagrangian reduction and the double spherical pendulum. ZAMP Zeitschrift for Angewandte Mathematik Und Physik, 44 (1), 17–43. doi: https://doi.org/10.1007/bf00914351
  30. Dehlin, F., Askolsson, J. (2017). Modelling and Simulation of Conservative Dynamical Systems by Computer Algebra Assisted Lagrangian Mechanics. Sweden, 80.
  31. Double spherical pendulum. Available at: https://www.mathworks.com/matlabcentral/fileexchange/37363-double-spherical-pendulum
  32. Kutsenko, L., Shoman, O., Semkiv, O., Zapolsky, L., Adashevskay, I., Danylenko, V. et. al. (2017). Geometrical modeling of the inertial unfolding of a multi-link pendulum in weightlessness. Eastern-European Journal of Enterprise Technologies, 6 (7 (90)), 42–50. doi: https://doi.org/10.15587/1729-4061.2017.114269
  33. Kutsenko, L. M. Illustrations to Geometric Modeling of Inertial Disclosure of Multilayer Rod Construction in Weightlessness. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/4868
  34. Kutsenko, L., Semkiv, O., Zapolskiy, L., Shoman, O., Ismailova, N., Vasyliev, S. et. al. (2018). Geometrical modeling of the shape of a multilink rod structure in weightlessness under the influence of pulses on the end points of its links. Eastern-European Journal of Enterprise Technologies, 2 (7 (92)), 44–58. doi: https://doi.org/10.15587/1729-4061.2018.126693
  35. Kutsenko, L. M. Illustrations to geometric modeling of oscillations of multi-faceted bar constructions in the absence of weight under the influence of pulses on the final points of the links. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/6335
  36. Kutsenko, L. M. Illustrations to the geometric modeling of the opening of the weightlessness of a rod construction in the form of a double spherical pendulum under the influence of pulses on the end points of its links. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/6864
  37. Navarro Heredia, A. L. (2017). Spatial Operator Algebra in Modeling and Properties of 3D Inverted Pendulae. McGill University Montreal, Canada, 121.
  38. Ludwicki, M., Awrejcewicz, J., Kudra, G. (2014). Spatial double physical pendulum with axial excitation: computer simulation and experimental set-up. International Journal of Dynamics and Control, 3 (1), 1–8. doi: https://doi.org/10.1007/s40435-014-0073-x
  39. Semkiv, O., Shoman, O., Sukharkova, E., Zhurilo, A., Fedchenko, H. (2017). Development of projection technique for determining the non-chaotic oscillation trajectories in the conservative pendulum systems. Eastern-European Journal of Enterprise Technologies, 2 (4 (86)), 48–57. doi: https://doi.org/10.15587/1729-4061.2017.95764

Downloads

Published

2018-07-27

How to Cite

Kutsenko, L., Semkiv, O., Asotskyi, V., Zapolskiy, L., Shoman, O., Ismailova, N., Danylenko, V., Vinogradov, S., & Sivak, E. (2018). Geometric modeling of the unfolding of a rod structure in the form of a double spherical pendulum in weightlessness. Eastern-European Journal of Enterprise Technologies, 4(7 (94), 13–24. https://doi.org/10.15587/1729-4061.2018.139595

Issue

Section

Applied mechanics