Enhancement of productivity of random sequences generation for information protection systems

Authors

  • Serhii Ivanchenko Institute of Special Communication and Information Protection National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Verhniokluchova str., 4, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-1850-9596
  • Serhii Yevseiev Simon Kuznets Kharkiv National University of Economics Nauky ave., 9-А, Kharkiv, Ukraine, 61166, Ukraine https://orcid.org/0000-0003-1647-6444
  • Vitalii Bezshtanko Institute of Special Communication and Information Protection National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Verhniokluchova str., 4, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-7998-246X
  • Vasyl Bondarenko State Service of Special Communications and Information Protection of Ukraine Solomyanska str., 13, Kyiv, Ukraine, 03110, Ukraine https://orcid.org/0000-0002-7578-3236
  • Oleksii Gavrylenko National Aviation University Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03058, Ukraine https://orcid.org/0000-0002-9552-5832
  • Nadiia Kazakova Odessa State Academy of Technical Regulation and Quality Kovalska str., 15, Odessa, Ukraine, 65020, Ukraine https://orcid.org/0000-0003-3968-4094
  • Roman Korolev Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023, Ukraine https://orcid.org/0000-0002-7948-5914
  • Serhii Mazor Institute of Special Communication and Information Protection National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Verhniokluchova str., 4, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-7086-6585
  • Vadym Romanenko Institute of Special Communication and Information Protection National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Verhniokluchova str., 4, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-8668-177X
  • Oleksii Fraze-Frazenko Odessa State Academy of Technical Regulation and Quality Kovalska str., 15, Odessa, Ukraine, 65020, Ukraine https://orcid.org/0000-0002-2288-8253

DOI:

https://doi.org/10.15587/1729-4061.2018.139755

Keywords:

random data, noise processes, information security, conversion, processing, statistical alignment

Abstract

The ways of enhancement of productivity of generation of random sequences, derived from physical sources for information protection systems were substantiated. This is necessary because today there is a rapid growth of technological capabilities and of rate indicators of implementation of various information services and applications, required by community. One of the main issues of the safe use of these services is to ensure information security, which requires the use of effective high­rate information protection systems and high­performance generation of random data sequences. In the course of conducting research with the aim of enhancing productivity, the features of conversion of actual noise processes, taking into consideration their non­stationarity and deviations from the probability distribution were analyzed. We proposed the ways to improve the methods of analog­to­digital conversion with the optimization of the scale dynamic range quantization and the pitch of discretization of a noise process over time. With a view to aligning statistical characteristics, the possibility of using the processing methods that enhance its statistical quality with economy of high­rate losses was explored. These are the method of sampling equally probable combinations (von Neumann – Elias –Ryabko – Matchikina) and the method of code processing (Santha – Vazirani) that provide an increased effectiveness due to code extension and involve conversion of the sequence: in the first method, with the use of equally probable combinations with rejection of unnecessary data; in the second method, without their rejection with the possibility of linear conversion. In order to optimize the conversion parameters at both stages of generation and to adapt these parameters to the peculiarities and changeability of characteristics of converted random processes, it was proposed to use feedbacks of converters’ outputs with previous conversion elements.

The adjustment of the specified parameters can be made during the generation based on the results of statistical analysis of the outputs of conversion stages. The obtained results are quite important, since their implementation in modern information protection systems will enable guaranteeing information security and safe usage of applications of the modern information service and the introduction of new applications.

Author Biographies

Serhii Ivanchenko, Institute of Special Communication and Information Protection National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Verhniokluchova str., 4, Kyiv, Ukraine, 03056

Doctor of Technical Science, Associate Professor

Department No. 1

Serhii Yevseiev, Simon Kuznets Kharkiv National University of Economics Nauky ave., 9-А, Kharkiv, Ukraine, 61166

Doctor of Technical Science, Senior Research

Department of Information Systems

Vitalii Bezshtanko, Institute of Special Communication and Information Protection National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Verhniokluchova str., 4, Kyiv, Ukraine, 03056

PhD, Head of Research Laboratory

Laboratory of Research Center

Vasyl Bondarenko, State Service of Special Communications and Information Protection of Ukraine Solomyanska str., 13, Kyiv, Ukraine, 03110

PhD, Deputy Chief

First Management of Department security information

Oleksii Gavrylenko, National Aviation University Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03058

PhD, Associate Professor

Department of IT-Security

Nadiia Kazakova, Odessa State Academy of Technical Regulation and Quality Kovalska str., 15, Odessa, Ukraine, 65020

Doctor of Technical Sciences, Associate Professor, Head of Department

Department of computer, information and measurement technologies

Roman Korolev, Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

PhD, Senior Lecturer

Department of Combat Use and Operation of Automated Control Systems

Serhii Mazor, Institute of Special Communication and Information Protection National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Verhniokluchova str., 4, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department No. 3

Vadym Romanenko, Institute of Special Communication and Information Protection National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Verhniokluchova str., 4, Kyiv, Ukraine, 03056

PhD, Head of Department

Department No. 4

Oleksii Fraze-Frazenko, Odessa State Academy of Technical Regulation and Quality Kovalska str., 15, Odessa, Ukraine, 65020

PhD, Associate Professor

Department of computer, information and measurement technologies

References

  1. Ivashchenko, A. V., Sypchenko, R. P. (1988). Osnovy modelirovaniya slozhnyh sistem na EVM. Leningrad: LVVIUS, 272.
  2. Moldavyan, N. A. (1998). Problematika i metody kriptografii. Sankt-Peterburg: Izdatel'stvo SPbGU, 212.
  3. Muramatsu, J., Miyake, S. (2017). Uniform Random Number Generation and Secret Key Agreement for General Sources by Using Sparse Matrices. Mathematics for Industry, 177–198.doi: https://doi.org/10.1007/978-981-10-5065-7_10
  4. Wyner, A. D. (1975). The Wire-Tap Channel. Bell System Technical Journal, 54 (8), 1355–1387. doi: https://doi.org/10.1002/j.1538-7305.1975.tb02040.x
  5. Korzhik, V. I., Yakovlev, V. A. (1981). Neasimptoticheskie ocenki effektivnosti kodovogo zashumleniya odnogo kanala. Mosocw: Problemy peredachi informacii, 11–18.
  6. Bos, J. W., Halderman, J. A., Heninger, N., Moore, J., Naehrig, M., Wustrow, E. (2014). Elliptic Curve Cryptography in Practice. Lecture Notes in Computer Science, 157–175. doi: https://doi.org/10.1007/978-3-662-45472-5_11
  7. Zhou, H. (2013). Randomness and Noise in Information Systems. California Institute of Technology Pasadena, California, 436.
  8. Erven, C., Ng, N., Gigov, N., Laflamme, R., Wehner, S., Weihs, G. (2014). An experimental implementation of oblivious transfer in the noisy storage model. Nature Communications, 5 (1). doi: https://doi.org/10.1038/ncomms4418
  9. Wehner, S., Curty, M., Schaffner, C., Lo, H.-K. (2010). Implementation of two-party protocols in the noisy-storage model. Physical Review A, 81 (5). doi: https://doi.org/10.1103/physreva.81.052336
  10. Damgård, I., Fehr, S., Morozov, K., Salvail, L. (2004). Unfair Noisy Channels and Oblivious Transfer. Lecture Notes in Computer Science, 355–373. doi: https://doi.org/10.1007/978-3-540-24638-1_20
  11. Bobnev, M. P. (1971). Generirovanie sluchaynyh signalov. Moscow: Energiya, 240.
  12. Torba, A. A., Bobkova, A. A., Gorbenko, Yu. I., Bobuh, V. A.; Gorbenko, I. D. (Ed.) (2012). Metody i sredstva generacii sluchaynyh bitovyh posledovatel'nostey. Kharkiv: Izd-vo «Fort», 232.
  13. Colbeck, R., Renner, R. (2012). Free randomness can be amplified. Nature Physics, 8 (6), 450–453. doi: https://doi.org/10.1038/nphys2300
  14. Gallego, R., Masanes, L., De La Torre, G., Dhara, C., Aolita, L., Acín, A. (2013). Full randomness from arbitrarily deterministic events. Nature Communications, 4 (1). doi: https://doi.org/10.1038/ncomms3654
  15. Chung, K.-M., Shi, Y. Wu, X. Physical randomness extractors: generating random numbers with minimal assumptions. Available at: https://arxiv.org/pdf/1402.4797.pdf
  16. Mironowicz, P., Gallego, R., Pawłowski, M. (2015). Robust amplification of Santha-Vazirani sources with three devices. Physical Review A, 91 (3). doi: https://doi.org/10.1103/physreva.91.032317
  17. Brandao, F. G. S. L., Ramanathan, R., Grudka, A., Horodecki, K., Horodecki, M., Horodecki, P. et. al. Robust device-independent randomness amplification with few devices. Available at: https://arxiv.org/abs/1310.4544
  18. Ugajin, K., Terashima, Y., Iwakawa, K., Uchida, A., Harayama, T., Yoshimura, K., Inubushi, M. (2017). Real-time fast physical random number generator with a photonic integrated circuit. Optics Express, 25 (6), 6511. doi: https://doi.org/10.1364/oe.25.006511
  19. Gurubilli, P. R., Garg, D. (2010). Random Number Generation and its Better Technique. Computer Science and Engineering Department, Thapar University, Patiala.
  20. Elsherbeny, M. N., Rahal, M. (2012). Pseudo – Random Number Generator Using Deterministic Chaotic System. International Journal of Scientific & Technology Research, 1 (9), 95–97.
  21. Kozierski, P., Lis, M., Królikowski, A. (2014). Parallel uniform random number generator in FPGA. Poznan University of Technology, Academic Journals: Computer Application in Electrical Engineering, 12, 399–406.
  22. Yang, J., Liu, J., Su, Q., Li, Z., Fan, F., Xu, B., Guo, H. (2016). 54 Gbps real time quantum random number generator with simple implementation. Optics Express, 24 (24), 27475. doi: https://doi.org/10.1364/oe.24.027475
  23. Wang, A., Wang, L., Li, P., Wang, Y. (2017). Minimal-post-processing 320-Gbps true random bit generation using physical white chaos. Optics Express, 25 (4), 3153. doi: https://doi.org/10.1364/oe.25.003153
  24. Shinohara, S., Arai, K., Davis, P., Sunada, S., Harayama, T. (2017). Chaotic laser based physical random bit streaming system with a computer application interface. Optics Express, 25 (6), 6461. doi: https://doi.org/10.1364/oe.25.006461
  25. Argyris, A., Pikasis, E., Syvridis, D. (2016). Gb/s One-Time-Pad Data Encryption With Synchronized Chaos-Based True Random Bit Generators. Journal of Lightwave Technology, 34 (22), 5325–5331. doi: https://doi.org/10.1109/jlt.2016.2615870
  26. Baskakov, S. I. (1988). Radiotekhnicheskie cepi i signaly. Moscow: Vysshaya shkola,. 448.
  27. von Neuman, J. (1951). Various Techniques Used in Connection with Random Digits. Monte Carlo Method, Applied Mathematics, 36–38.
  28. Elias, P. (1972). The Efficient Construction of an Unbiased Random Sequence. The Annals of Mathematical Statistics, 43 (3), 865–870. doi: https://doi.org/10.1214/aoms/1177692552
  29. Ryabko, B. Ya., Machikina, E. P. (1998). Effektivnoe preobrazovanie sluchaynyh posledovatel'nostey v ravnoveroyatnye i nezavisimye. Problemy peredachi informacii, 35 (2), 23–28.
  30. Santha, M., Vazirani, U. V. (1986). Generating quasi-random sequences from semi-random sources. Journal of Computer and System Sciences, 33 (1), 75–87. doi: https://doi.org/10.1109/sfcs.1984.715945
  31. Ivanchenko, S. O., Parshukov, S. S. (2007). Obgruntuvannia metodu heneratsiyi vypadkovykh poslidovnostei z kodovoiu obrobkoiu dlia kryptohrafichnykh system zakhystu informatsiyi. Spetsialni telekomunikatsiyni systemy ta zakhyst informatsiyi: Tematychnyi vypusk “Matematychni metody prykladnoi kryptohrafiyi”, 1 (13), 152–155.
  32. Ivanchenko, S. O., Zaitsev, O. D. (2009). Metod vysokoproduktyvnoho peretvorennia shumovykh syhnaliv u vypadkovu poslidovnist. Spetsialni telekomunikatsiyni systemy ta zakhyst informatsiyi, 2 (16), 140–144.
  33. Gallager, R. G. (1974). Teoriya informacii i nadezhnaya svyaz'. Moscow: Sovetskoe radio, 720.
  34. Mak-Vil'yams, F. Dzh., Sloen, N. Dzh. A. (1979). Teoriya kodov, ispravlyayushchih oshibki. Moscow: Svyaz', 744.
  35. Murry, H. F. (1970). A General Approach for Generating Natural Random Variables. IEEE Transactions on Computers, C-19 (12), 1210–1213. doi: https://doi.org/10.1109/t-c.1970.222860
  36. Maurer, U. (1990). Provable Security in Cryptography. Diss. ETH No 9260, 86–93.
  37. Bassham, L. E., Rukhin, A. L., Soto, J., Nechvatal, J. R., Smid, M. E., Barker, E. B. et. al. (2010). A statistical test suite for random and pseudorandom number generators for cryptographic applications. National Institute of Standards and Technology, 131. doi: https://doi.org/10.6028/nist.sp.800-22r1a

Downloads

Published

2018-07-27

How to Cite

Ivanchenko, S., Yevseiev, S., Bezshtanko, V., Bondarenko, V., Gavrylenko, O., Kazakova, N., Korolev, R., Mazor, S., Romanenko, V., & Fraze-Frazenko, O. (2018). Enhancement of productivity of random sequences generation for information protection systems. Eastern-European Journal of Enterprise Technologies, 4(9 (94), 50–60. https://doi.org/10.15587/1729-4061.2018.139755

Issue

Section

Information and controlling system